
eTPL: An Enhanced Version of the
TLS Presentation Language

Suitable for Automated Parser Generation
Andreas Walz, Axel Sikora

Institute of Reliable Embedded Systems and Communication Electronics
Offenburg University of Applied Sciences
Badstrasse 24, 77652 Offenburg, Germany

Email: {andreas.walz, axel.sikora}@hs-offenburg.de

Abstract—The specification of the Transport Layer Security
(TLS) protocol defines its own presentation language used for
the purpose of semi-formally describing the structure and on-
the-wire format of TLS protocol messages. This TLS Presentation
Language (TPL) is more expressive and concise than natural
language or tabular descriptions, but as a result of its limited
objective has a number of deficiencies. We present eTPL, an
enhanced version of TPL that improves its expressiveness, flexi-
bility, and applicability to non-TLS scenarios. We first define a
generic model that describes the parsing of binary data. Based
on this, we propose language constructs for TPL that capture
important information which would otherwise have to be picked
manually from informal protocol descriptions. Finally, we briefly
introduce our software tool etpl-tool which reads eTPL
definitions and automatically generates corresponding message
parsers in C++. We see our work as a contribution supporting
sniffing, debugging, and rapid-prototyping of wired and wireless
communication systems.

I. INTRODUCTION

Typically, the specification of an implementable network
protocol requires a paper-friendly description of its messages.
In many cases this includes a description of the messages’
encoding, i.e. their binary on-the-wire format. To this end,
the specifications of quite a number of both long-standing as
well as recent protocols resort to informal, typically table-like
illustrations of the binary layout of messages; e.g. IP [1], TCP
[2], and 6LoWPAN [3]. This approach still appears to be the
most popular one, despite the long time that has passed since
network protocols are subject to written specification.

Having said that, there are other options which can serve
a similar purpose, though at a higher layer of abstraction.
So-called Data Description Languages (DDL) can be used to
describe messages in an abstract way. The Abstract Syntax No-
tation One (ASN.1) [4] probably is the most popular example,
but many more DDLs exist; see e.g. [5], [6], [7]. Most DDLs
effectively disentangle the description of the message content
from the matter of message encoding. Typically, the latter is
handled in a platform-independent way by well-established
encoding schemes. For ASN.1, a popular example is given by
the Distinguished Encoding Rules (DER). Unfortunately, using
DDL-based message exchange comes with a certain overhead,
both in terms of implementation and communication.

The authors of the Transport Layer Security (TLS) protocol
specification have taken yet another approach. Defined solely
for the purpose of semi-formally describing the structure and
binary format of TLS and DTLS messages as sent over the
network, a new description (“presentation”) language has been
introduced [8], [9], [10], [11], [12]. In the following, we refer
to this presentation language as TLS Presentation Language
(TPL).

Despite its originally quite limited scope, TPL has also
been used and extended in the context of other protocol
specifications. For example, the European Telecommunications
Standards Institute is using its own version of TPL for
describing the message and certificate formats for Intelligent
Transport Systems [13]. The family of IEEE Standards for
Wireless Access in Vehicular Environments (IEEE 1609) used a
similar, TPL-based presentation language in an earlier version
of the standard [14] but has switched to ASN.1 in a later
version [15].

It can be seen as an indication of the general appeal of
TPL that it has been made use of well beyond the scope of
TLS. However, there are significant deficiencies of TPL that
prevent its wider and more formal use. First, despite the fact
that TPL is used more or less consistenly throughout the TLS
specification, the definition of TPL itself is somewhat casual
and lacks a formal basis. Furthermore, there remain some
important aspects of the format of messages that – though
affecting the message parsing – cannot be expressed in TPL
[16]. For example, TPL provides no mechanism to describe
the interplay between different protocol layers. As a result,
developers still have to consult ancillary text that is written
in natural language and distributed over various places in
the specification. This fact not only complicates the manual
implementation of corresponding message parsers, but also
renders an automated generation of message parsers from TPL
virtually impossible.

We strive to overcome some of the shortcomings of TPL that
limit its usability or let alternative options appear preferable.
To this end, we propose a generic model for parsing binary
data. Based on this, we present eTPL, an enhanced version of
TPL, along with etpl-tool, a software tool for automated

Copyright c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

parser generation from eTPL descriptions. eTPL essentially
extends the syntax and semantics of TPL to improve its
expressiveness and flexibility. Our work highlights a key
advantage of building on TPL: the possibility to automatically
generate message parsers from the TPL definitions given in
the TLS specification requiring only minor adaptions. To the
best of our knowledge, we are the first to propose and develop
a more formally usable version of TPL.

Our paper is structured as follows: Section II presents
our parsing model. Section III gives a brief overview of
the original version of TPL before introducing eTPL, our
enhanced version of TPL. Section IV presents etpl-tool,
our software tool for processing eTPL definitions. Finally,
Section V conlcudes and outlines future work.

II. A GENERIC PARSING MODEL

As a first step towards a more formally usable version of
TPL, we define a generic model that describes how complex
and nested messages with a flat and stream-like binary encod-
ing shall be parsed. Our model has been inspired by the parsing
paradigm that is inherent in the TLS protocol. Therefore, the
model is particularly suitable to describe the parsing of TPL-
specified data1. However, it is likewise applicable to a wide
range of other protocols as well as data and message types.

A. Streams, Parsers, and Trees

In our model, parsing (or dissecting) denotes the process of
transforming a flat stream of binary data (a message in its on-
the-wire encoding) into a structured, tree-like representation.
Serializing refers to the reverse process, turning the tree-
like representation into a flat stream of binary data. Parsing
is always performed linearly in forward direction without
looking ahead. That is, during parsing there must not be
any jumping back and forth inside the input stream to be
parsed. Correspondingly, serialization is done by depth-first
tree traversal.

We use the following terminology: a type is a recipe for
parsing data according to its format definition. A type is
either atomic without parsing-relevant substructure (e.g. an
integer value or an opaque blob of raw data) or composite
with several subelements (e.g. a network packet comprising
multiple distinct fields). A field is an instance of a certain
type, typically within the definition of a composite type. Here,
the type of a field may be composite itself, inducing a nested
structure and giving rise to the tree-like data representation.

A parser (or dissector) is the implementation of a type’s
parsing recipe. While linearly consuming the flat input stream
of binary data, a parser grows the corresponding branch of the
tree-like message representation. The parser of a composite
type hands off the input stream to its subparsers (which
correspond to the composite type’s fields) one after the other2.
Where fields depend on the parsing result of preceding fields,
the corresponding subparsers get instantiated on-the-fly. The

1Note that this model is not about how the (e)TPL description itself is
parsed. A software tool that parses (e)TPL is presented in Section IV.

2This can be regarded as some kind of datafall, a waterfall of data.

Length

Size (= expected length)

160301012C01000128030340C70E243001B96D8C636877

160301012C010001280303

Input stream

Parser
Parsing

Fig. 1. Illustration of a parser consuming a flat stream of binary data. The
amount of data consumed by a parser up to a certain point in time is referred to
as its length. Optionally, a target value for the parser’s length may be defined,
referred to as the parser’s size. A parser stops parsing when it is saturated or
when its length has reached its size.

input stream to be parsed may be supplied in arbitrarily
fragmented pieces, i.e. intermediate discontinuity in the stream
does not affect the parsing result.

The amount of data consumed by a parser up to a certain
point in time is referred to as its length. A parser consumes
data from the input stream until it is saturated (e.g. all
subparsers of a composite type are saturated) or until its length
has reached an optionally defined target value, referred to
as the parser’s – or the type’s – size (see Fig. 1). Unless
undefined, a parser’s size may either be determined by its type
or by the parsing context.

While parsing, a possible source of inconsistency is a
mismatch between a parser’s size and its state of saturation.
Such situations are most likely for parsers of composite types.
For example, consider the parser of a composite type whose
size is determined by the value of some previously parsed
length field. An overflow situation is given if all subparsers
of the composite type’s parser have completed parsing while
there is remaining input data to fill the gap between the parser’s
length and its size. An underflow situation is given if the parent
parser’s length has reached its size while not all subparsers
have completed parsing. Overflow and underflow situations
are illustrated in Fig. 2.

B. Generic Message Trees

In this section, we introduce Generic Message Trees
(GMTs) as a conjoint concept for the implementation of
parsers (as described previously) and the tree-like message
representation generated by such parsers.

A GMT is an ordered rooted tree with nodes that each
represent a particular component of a parsed message. A leaf
node corresponds to an atomic message component without
parsing-relevant substructure. Hence, leaf nodes hold their
corresponding unparsable portion of the original input stream
as raw data. Contrary to leaf nodes does an internal node corre-
spond to a composite message component whose substructure
is given recursively by its child nodes. Fig. 3 shows an excerpt
of a GMT that represents a TLS message.

GMTs are closely related to the concept of parse trees. In
contrast to the latter, however, GMTs constitute an active,

16 03 01 01 2C 01 00 01 28 03 03 40 C7 0E 24 30 01 B9 6D 8C 63 68 77 38 69 64 32 D3 E6 F9 49 10 7A AB AD 84 50 CD FF D6 A2 66 E4 00 00 92 C0 30 ...

{0:TLSRecord} TLSRecord

|--[0:type] RecordType | 16 | handshake(22)

|--[1:version] ProtocolVersion | 03 01 | TLSv1(769)

|--[2:length] Integer | 01 2C | 300

 --{3:msg} HandshakeMessage

 |--[0:type] HandshakeType | 01 | client_hello(1)

 |--[1:length] Integer | 00 01 28 | 296

 --{2:msg} ClientHello

 |--[0:version] ProtocolVersion | 03 03 | TLSv1_2(771)

 |--[1:random] OpaqueBlob | 40 C7 0E 24 30 01 B9 6D |

 | | 8C 63 68 77 38 69 64 32 |

 | | D3 E6 F9 49 10 7A AB AD |

 | | 84 50 CD FF D6 A2 66 E4 |

 |--[2:session_id_length] Integer | 00 | 0

 |--[3:session_id] OpaqueBlob | |

 |--{4:cipher_suites} ClientHello_cipher_suites

 | |--[0:_N] Integer | 00 92 | 146

 | --{1:_V} DynamicVector

 | |--[0:CipherSuite] CipherSuite | C0 30 | TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384(49200)

Fig. 3. Illustration of the raw data representation (octet string in hexadecimal notation above the horizontal line) as well as the GMT representation (tree
structure below the horizontal line) of the first part of a TLS Record containing a TLS ClientHello message. GMT nodes are printed in the same order as
they are traversed for serialization. The four columns of the GMT’s visualization reflect (from left to right) the tree structure, the nodes’ types, the leaf nodes’
raw data representations (blank for internal nodes), and a human-readable representation (where applicable), respectively.

Outer parser

Normal

Over ow

Under ow

De cit data

Excess data

Inner parser

L1L1

L2

L2

L2

L2

L2

L2

Inner parser's size

Fig. 2. Illustration of overflow and underflow situations while parsing
nested message components with variable length. Inconsistencies in length
information can result in an overflow situation with real excess data (data
provided by the outer parser which the inner parser cannot attribute to any
field) or an underflow situation with deficit data (data the inner parser expects
but the outer parser does not provide).

dynamic, and self-manipulating data structure. Every GMT
node implements the parser that corresponds to its type. In
this way, GMT nodes corresponding to composite types self-
inflate by creating child nodes while parsing the input stream3.
Furthermore, a GMT may be navigated relative to any of its
nodes and at any state of parsing. That is, the (partially grown)
GMT that a parser (i.e. a parsing GMT node) is embedded
in can serve as a dynamic source of context information
which may affect the parsing process. For navigating a GMT
(relative) paths similar to those of the folder structure of a file
system can be used.

3That is, a top-level message is parsed by using a GMT node that
corresponds to the message’s top-level type as a seeding root node.

In order to facilitate efficient operations, GMTs have several
further features: a GMT node may have a dynamic type
component in addition to its immutable and static one. While
its static component is determined by the type it implements,
the dynamic type may determined by the concrete data the
GMT has parsed at run-time. Furthermore, any GMT node
may hold supplemental meta information to be passed to and
from entities operating on the GMT.

III. TPL AND ENHANCED TPL

The syntax of TPL resembles the one of the “C” program-
ming language and comprises basic types such as integer and
enumeration types (enum), as well as lists (also referred to
as vectors) of types, composite types (struct), and vari-
ants (select/case, i.e. dynamic choices within composite
types). For a detailed introduction to TPL, please refer to any
version of the TLS specification [8], [9], [10].

Fig. 4 shows the definition of a TLS ClientHello message
using TPL, and at the same time illustrates one of the defi-
ciencies of TPL: an ill-defined construct that is barely suitable
for more than an informal guidance for human readers.

Generally, TPL allows to capture and concisely express most
of the information that is required to parse messages. However,
it fails to do so in way that would allow to automatically
generate message parsers from TPL definitions.

In the following, we summarize the TPL enhancements that
we propose as a delta between TPL and eTPL. Some of these
enhancements have been inspired by Parsifal [17]. Our en-
hancements are disjunct and compatible to those introduced in
[14] and [13]. Note that in the following we also list enhance-
ments which are not strictly necessary to enable automated
parser generation. Instead, we also propose enhancements that
generally improve flexibility and applicability.

• Explicit size of types and fields: We introduce a lan-
guage construct that allows to explicitly define the parser

struct {
ProtocolVersion client_version;
Random random;
SessionID session_id;
CipherSuite cipher_suites<2..2ˆ16-2>;
CompressionMethod

compression_methods<1..2ˆ8-1>;
select (extensions_present) {

case false:
struct {};

case true:
Extension extensions<0..2ˆ16-1>;

};
} ClientHello;

Fig. 4. Definition of a TLS ClientHello message with several fields using
TPL (taken directly from the specification [10]). The definition of refer-
enced types is not shown here. The syntax of TPL resembles the one of
the “C” programming language, but is less formal: for example, select
(extensions_present) is not well-defined and is barely suitable for
more than an informal guidance for human readers.

size of types or fields. The size definition may either use
fixed values or variable context information. For instance,
this mechanism may be used to bind the size of a payload
field to the decoded value of a preceeding length field.

• Type parametrization: We allow types to have pa-
rameters and define a language construct to set these
parameters when instantiating a type. The acceptable
numeric limits (minimum/maximum) of integer types are
one example of useful type parameters.

• Cross-layer fragmentation: We introduce a mechanism
in the language to express that a field within a composite
type conveys a fragment of an independent binary stream.
After parsing, fragments are handed off to a stream
manager which tries to reassemble the original stream.
Finally, the reassembled stream can be handed off to
some suitable parser. This mechanism is necessary in
order to be able to handle the fragmentation of handshake
messages in DTLS.

• Indefinite-length vectors: We allow vectors to have an
indefinite length. The parser of an indefinite-length vector
consumes as much input data as it is supplied with.
That is, whenever parsing of one of its subelements
is complete, a new element is generated and parsing
continues. Note that the parser of an indefinite-length
vector still stops parsing if the parser’s length reaches its
size (if specified). Indefinite-length vectors can be used
to parse a stream of consecutive protocol messages of the
same type.

• Element-based vector length: We introduce a language
construct that allows to specify the length of a vector
in terms of the number of its elements. In the original
version of TPL the length of a vector may only be given
in terms of the number of bytes its on-the-wire encoding
requires.

• Fallback enumeration item: In the definition of a
enumeration type we allow to set a fallback (default)
enumeration item. If defined, the fallback item matches
the input data whenever no other item matches. This
fallback mechanism is useful if not every single enumer-
ation option a protocol supports is relevant for parsing or
further processing.

• Padding field: We introduce a new padding type to be
used within composite types. A padding field parses a
variable amount of data to make the total length of the
composite type’s parser an integer multiple of a certain
block length. The desired block length is a parameter of
the padding type. A padding field may be used at any
place within a composite type.

• Optional fields: We allow trailing fields within a com-
posite type to be marked as optional. Optional fields
only appear in the resulting GMT if all preceeding fields
have been parsed completely while there is still more
data available to be parsed. Note that the latter condition
is not fulfilled if the parser’s length has reached its
size. For example, making the “extensions” field in
Fig. 4 optional allows to avoid the ill-defined construction
mentioned previously.

• Transient fields: We allow fields within a composite type
to be marked as transient. A transient field is parsed
normally but does not appear in the resulting GMT. This
is useful in cases where a field is of no interest for further
processing at all (as might be the case e.g. for padding
fields).

• Distinctive fields: We allow fields within a composite
type to be marked as distinctive. In essence, the dynamic
type of a GMT node corresponding to a distinctive field
contributes to the dynamic type of the parent GMT node,
i.e. the GMT node corresponding to the composite type
the distinctive field belongs to. This mechanism allows
to propagate relevant dynamic information towards lower
nesting levels, i.e. towards the GMT’s root.

• Extensible composite types: We introduce extensible
composite types. The parser of an extensible composite
type does not run into saturation if all its fields have
been parsed completely and does not blindly discard
excess data in an overflow situation. In contrast, an
additional opaque field is created dynamically as needed.
The additional field absorbs all input data which a non-
extensible parser would discard.

• Bit granularity: We use the bit as the smallest infor-
mation quantum. The original version of TPL is focused
on byte-oriented data where the length not only of every
message has to be an integer multiple of a byte but also
the length of every single field. This is in contrast to
some protocols which use fields of fractional byte length,
e.g. the four-bit data offset in the TCP header [2]. Bit
granularity is applicable in any place where a length or
a size is specified.

• Dynamic parsing context: We introduce language con-
structs that allow to make use of the dynamic parsing
context provided by GMTs. The parsing context is given
by the (partially grown) GMT a parser is embedded in.
Concrete elements (i.e. GMT nodes or meta information
associated to GMT nodes) are referenced using paths
relative to the parser’s position within the GMT.

Having listed our TPL enhancements, we briefly present a
software tool for processing eTPL-based message definitions
in the following section.

IV. A VERSATILE ETPL SOFTWARE TOOL

Implementing message parsers can be a daunting task. Typ-
ically, parsing is highly protocol-specific while requiring low-
level source code. In order to support developers, a number
of parsing tools exist, including the popular tool Wireshark
[18] and various Python-based tools like Scapy [19], Construct
[20], Hachoir [21], and Kaitai Struct [22]. However, we are not
aware of any tool that uses TPL as the description language
for deriving parsing routines4.

Therefore, we developed etpl-tool [24], a software tool
which comprises a parser for eTPL as well as a code generator
for C++-based message parsers. Message parsing is based on
gmt-cpp [25], a C++ implementation of the parsing model
and the GMT concept as it is described in Section II.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a set of enhancements to the TLS
Presentation Language (TPL) that are aimed at compensating
for some of its deficencies.

As a first step, we presented a generic model for parsing
complex binary-encoded messages. Generic Message Trees
(GMTs), a powerful concept for a tree-like representation of
messages, form an integral part of this model. Based on this,
we proposed eTPL as a version of TPL that is usable in a more
formal way than TPL is. eTPL provides language constructs
that can capture important information which would otherwise
have to be given in informal descriptions. These new language
features pave the way for automatically generating message
parsers from (e)TPL definitions. e.g. for TLS messages using
their TPL definitions from the TLS specification.

Moreover, eTPL introduces features which are likely to
extend its scope of applicability. For example, eTPL allows
to use the bit as the smalles information quantum; for both
whole messages as well as individual message fields.

Finally, we briefly presented etpl-tool, a software tool
that automatically generates C++ message parsers from eTPL
definitions. While still being work in progress, our software
tool may serve as a valuable tool whenever complex messages
need to be translated between their flat binary on-the-wire
and their structured tree-like respresentation. For instance,
it allows rapid prototyping of network protocols and their
implementations. We plan to extend eTPL with further useful
features and improve our software tool accordingly.

4There is one tool which implements a rudimentary parser for TPL, though
it does not seem to go any further than that [23].

ACKNOWLEDGMENT

We would like to thank Prof. Dr. Dirk Timmermann from
Rostock University for his scientific support.

REFERENCES

[1] J. Postel, “Internet Protocol,” RFC 791, Internet Engineering Task Force,
Sep. 1981.

[2] ——, “Transmission Control Protocol,” RFC 793, Internet Engineering
Task Force, Sep. 1981.

[3] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” RFC 6282, Internet Engineering Task
Force, Sep. 2011.

[4] Olivier Dubuisson, ASN.1 – Communication Between Heterogeneous
Systems, June 2000.

[5] Rob Pike, Sean Dorward, Robert Griesemer, Sean Quinlan, “Interpreting
the Data: Parallel Analysis with Sawzall,” Scientific Programming Jour-
nal: Special Issue on Grids and Worldwide Computing Programming
Models and Infrastructure, vol. 13, no. 4, pp. 227–298.

[6] “Google Protocol Buffers,” https://developers.google.com/protocol-
buffers.

[7] Mark Slee, Aditya Agarwal and Marc Kwiatkowski,
“Thrift: Scalable Cross-Language Services Implementation,”
http://thrift.apache.org/static/files/thrift-20070401.pdf, Tech. Rep.

[8] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246,
Internet Engineering Task Force, Jan. 1999.

[9] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.1,” RFC 4346, Internet Engineering Task Force, Apr. 2006.

[10] ——, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC
5246, Aug. 2008.

[11] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,”
RFC 4347, Internet Engineering Task Force, Apr. 2006.

[12] ——, “Datagram Transport Layer Security Version 1.2,” RFC 6347,
Internet Engineering Task Force, Jan. 2012.

[13] “Intelligent Transport Systems (ITS); Security; Security header and cer-
tificate formats (TS 103 097),” European Telecommunications Standards
Institute, Jun. 2015.

[14] “IEEE Standard for Wireless Access in Vehicular Environments –
Security Services for Applications and Management Messages,” IEEE
Std 1609.2-2013 (Revision of IEEE Std 1609.2-2006), pp. 1–289, April
2013.

[15] “IEEE Standard for Wireless Access in Vehicular Environments –
Security Services for Applications and Management Messages,” IEEE
Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013), pp. 1–240, March
2016.

[16] Affeldt, Reynald and Marti, Nicolas, “Towards Formal Verification
of TLS Network Packet Processing Written in C,” in Proceedings
of the 7th Workshop on Programming Languages Meets Program
Verification, ser. PLPV ’13, 2013, pp. 35–46. [Online]. Available:
http://doi.acm.org/10.1145/2428116.2428124

[17] O. Levillain, “Parsifal: A Pragmatic Solution to the Binary Parsing
Problem,” in 2014 IEEE Security and Privacy Workshops, May 2014,
pp. 191–197.

[18] “Wireshark: A network protocol analyzer,” https://www.wireshark.org/.
[19] “Scapy: the python-based interactive packet manipulation program &

library,” http://www.secdev.org/projects/scapy/.
[20] “Construct: A powerful declarative parser (and builder) for binary data,”

http://construct.readthedocs.io/en/latest/.
[21] “Hachoir: A Python library to view and edit a binary stream field by

field,” http://hachoir3.readthedocs.io/.
[22] “Kaitai Struct: A new way to develop parsers for binary structures,”

http://kaitai.io/.
[23] Rich Salz, “A parser for the TLS data description language used in the

IETF RFC’s,” https://github.com/richsalz/tlsparser.
[24] “etpl-tool: A tool for processing (e)TPL message

definitions and generating corresponding C++ message parsers,”
https://github.com/phantax/etpl-tool.

[25] “gmt-cpp: An implementation of Generic Message Trees (GMTs) in
C++ ,” https://github.com/phantax/gmt-cpp.

