
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Exploiting Dissent: Towards
Fuzzing-based Differential Black-Box Testing

of TLS Implementations
Andreas Walz, Axel Sikora

Abstract—The Transport Layer Security (TLS) protocol is one of the most widely used security protocols on the internet. Yet do
implementations of TLS keep on suffering from bugs and security vulnerabilities. In large part is this due to the protocol’s complexity
which makes implementing and testing TLS notoriously difficult. In this paper, we present our work on using differential testing as
effective means to detect issues in black-box implementations of the TLS handshake protocol. We introduce a novel fuzzing algorithm
for generating large and diverse corpuses of mostly-valid TLS handshake messages. Stimulating TLS servers when expecting a
ClientHello message, we find messages generated with our algorithm to induce more response discrepancies and to achieve a higher
code coverage than those generated with American Fuzzy Lop, TLS-Attacker , or NEZHA. In particular, we apply our approach to
OpenSSL, BoringSSL, WolfSSL, mbedTLS, and MatrixSSL, and find several real implementation bugs; among them a serious
vulnerability in MatrixSSL 3.8.4. Besides do our findings point to imprecision in the TLS specification. We see our approach as present
in this paper as the first step towards fully interactive differential testing of black-box TLS protocol implementations. Our software tools
are publicly available as open source projects.

Index Terms—TLS, network security, cryptographic protocols, fuzzing, differential testing.

F

1 INTRODUCTION

IN an increasing number of domains secure network com-
munication is a key requirement, not only for functional

safety but also for user acceptance. This is particularly true
in the Internet of Things (IoT), where Cyber Physical Systems
connect the physical world with the worldwide cyber space.

The Internet Engineering Task Force has developed the
Transport Layer Security (TLS) protocol to provide end-to-
end security over insecure networks [1], [2]. Since quite
some time TLS is one of the Internet’s cornerstones for se-
cure communication. TLS supports encrypted and integrity-
checked data transfer as well as mutual authentication of
communication partners.

The TLS protocol is receiving continual scrutiny [3], [4],
[5], [6], [7] and over time a long list of serious attacks on
the protocol and some of its cryptographic constructions
have been found [8], [9]. Still, in suitable and up-to-date
configurations, TLS as a protocol can be considered sound
and secure [10].

However, security vulnerabilities do not only arise from
the protocol itself. Often, it is the implementation of the proto-
col which introduces serious security issues [11], [12]. This
fact is emphatically demonstrated by another long list of
security vulnerabilities, this time caused by flaws in popular
implementations of TLS, e.g. the Heartbleed bug [13] and the
CCS injection bug [14] in OpenSSL [15], the goto fail bug [16]
in GnuTLS [17], and others.

• The authors are with the Institute of Reliable Embedded Systems and
Communication Electronics (ivESK), Offenburg University of Applied
Sciences, Germany. Email: {andreas.walz, axel.sikora}@hs-offenburg.de.

Second revision of manuscript TDSC-2017-01-0005

There are several reasons that make TLS implementa-
tions particularly susceptible to bugs:

• Flexibility and agility: The TLS protocol has a large
parameter space with dynamic negotiation mecha-
nisms. Several extension points allow adding new
cryptographic algorithms and protocol features with-
out touching the core specification.

• Complexity: The protocol’s flexibility brings a high
complexity to the protocol state machine, the han-
dling of interactions between different protocol
modes, and the message parsing. For example, TLS
requires context-sensitive message parsers which are
known to be a common source of bugs [18]. The
parsing routines of TLS implementations can easily
exceed several thousand lines of code.

• Specification: The specification of TLS along with all
its extensions and options is distributed over nearly
one hundred documents with thousands of pages.
Beyond that does the specification not have formal
character, lacking precision and leaving interpreta-
tion at the developer’s discretion.

• Interoperability and diversity: Intolerant behav-
ior in the diverse corpus of internet-deployed TLS
implementations forces developers to individually
trade strict conformance to the specification against
large-scale interoperability.

Unfortunately does testing TLS implementations turn
out to be highly nontrivial; at least if more than mere mostly-
positive testing is aimed for [19]. Some of the reasons are:

• Protocol messages: The complexity and peculiarity
of the TLS message format demand sophisticated test

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

message generators. TLS features a multitude of dif-
ferent message, content, and data types. Ignorantly
generated test messages are likely to fail early input
validation.

• State machine: The TLS protocol state machine re-
quires dynamic and nontrivial protocol interactions
for deep and thorough probing.

• Cryptography: By its nature, TLS makes extensive
use of cryptography. The use of cryptography re-
quires elaborate and dynamic test interactions, just
like a complex state machine does.

• Lack of formal reference: Given the lack of a formal
TLS specification, no entity exists that can reliably tell
correct from incorrect implementation behavior. Af-
ter all, who can reliably decide whether the outcome
of a test is positive or negative?

In particular the last-mentioned issue is addressed by
various research activities: for example, miTLS is a refer-
ence implementation of TLS verified with respect to certain
security properties [20], [21]. However, it is unlikely that
verified implementations like miTLS fully replace prevalent
implementations like OpenSSL , BoringSSL , or WolfSSL in
the near future. In particular, this cannot be expected where
severely resource-constrained devices, e.g. IoT nodes, are
involved. Hence, the need for appropriate testing concepts
and tools apparently still persists.

Motivated by this, we present our work on designing
and implementing a novel test methodology that aims
to help developers and users to identify issues in black-
box TLS implementations. Our work has been inspired by
Frankencerts [22], an approach applying fuzzing techniques
and differential testing to the X.509 certificate validation
routines that the authentication in TLS is based on. In
contrast to Frankencerts , however, we put our focus on the
implementation of the TLS handshake protocol itself.

Briefly explained, we use semi-randomly generated TLS
protocol messages to stimulate multiple TLS implementa-
tions with equivalent input and use discrepancies in their
responses to detect implementation bugs. Our approach
does neither require code instrumentation nor execution
monitoring, a property particularly interesting for develop-
ers of embedded platforms. At the heart of our approach
is a novel fuzzing algorithm that generates TLS protocol
messages which are highly effective in triggering discrepant
protocol behavior among different TLS implementations.

Clearly, differential testing itself is not a new concept
[23]. However, to the best of our knowledge, we are the
first to apply fuzzing-based differential testing to the TLS
handshake protocol itself. In previous work, differential
testing has only been applied to the validation of certificates
[22], [24], [25], [26].

We see several use cases for our approach:

• Debugging and nonconformance detection: Com-
paring a set of different TLS implementations among
each other or comparing an implementation under
test against a reference implementation is a way to
detect implementation bugs. Moreover may it expose
behavior that does not conform to the specification.

• Regression testing: Two versions of the same pro-
tocol implementation might be contrasted in order
to gain confidence that, while changes and im-
provements have been implemented, no unintended
change of behavior has been introduced.

• Fingerprinting: Comparing an unknown remote
protocol implementation to a set of known reference
implementations might allow to infer the origin of
the unknown protocol implementation.

• Identifying imprecise standardisation: When com-
paring a set of protocol implementations, disagree-
ment among the implementations may serve as a
pointer to an imprecise protocol specification.

This paper presents the following contributions:

• Generic Message Trees: We design and implement
the concept of Generic Message Trees (GMTs), a versa-
tile and dynamic data structure for efficiently oper-
ating on highly-structured protocol messages.

• Fuzzing-based TLS message generation: Based on
the GMT concept, we present a randomized algo-
rithm for generating highly diverse and mostly-valid
TLS handshake messages. Mostly-valid means that
messages tend to obey all except very few syntactic
and semantic rules.

• Differential testing of ClientHello parsing: We
use our message generation algorithm to differen-
tially test five popular TLS server implementations:
OpenSSL , BoringSSL , WolfSSL , mbedTLS , and Ma-
trixSSL . In that course, we show that our algorithm is
more effective in provoking discrepant resonses than
American Fuzzy Lop [27], TLS-Attacker [28], and
NEZHA are. We study some of the bugs we exposed
in TLS implementations using our test approach.

• Software framework: We make our software avail-
able for other researchers and developers [29].

Currently, our approach is limited to challenging the
parsing routines for ClientHello messages embedded in
TLS server implementations. Note that during this initial
phase of the TLS handshake cryptography does not pose a
challenge. However, an important goal of our ongoing work
is to overcome these limitations and allow to test the whole
handshake process, including the client perspective.

Our paper is organized as follows: Section 2 gives an
overview of the TLS protocol, while Section 3 outlines
related work. The concept of GMTs is presented in Section 4.
Section 5 explains our test methodology, while its evaluation
is provided in Section 6. A study of some TLS implemen-
tation bugs that we found is given in Section 7. Finally,
Section 8 sketches future research directions and Section 9
summarizes the paper.

2 THE TLS PROTOCOL FAMILY

The TLS protocol provides a flexible framework for crypto-
graphically securing communication from end to end over
networks assumed to be under an active attacker’s control.
Since its outset, TLS evolved from version 1.0 [30] to its

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Client Server

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

Finished

ClientHello

Certificate

ChangeCipherSpec

ClientKeyExchange

Finished

CertificateVerify

ChangeCipherSpec

Fig. 1. Illustration of the sequence of TLS protocol messages typically
exchanged between a TLS client and a TLS server during a handshake
with mutual authentication. Depending on the authentication and key
agreement scheme, some message may be optional or have a context-
dependent interpretation. Note that with the upcoming TLS 1.3 the
handshake is going to change significantly [31].

currently latest version 1.2 [1]. At present, version 1.3 of
TLS is under preparation [31].

TLS is composed of five sub-protocols. The Record Proto-
col fragments data from higher TLS layers and handles data
encryption and integrity protection. Its protocol data unit is
called a TLS record. Stacked on top are the Handshake, Change
Cipher Specification, Alert, and Application Data protocols. The
first two are responsible for negotiating connection param-
eters and cryptographic keys. The Alert Protocol delivers
error messages and the Application Data Protocol is used to
securely transfer application data.

A TLS connection is established via a handshake where
client and server exchange multiple messages (see Fig. 1).
Each handshake message comprises a complex structure
of binary-encoded integer, enumeration, and opaque fields
as well as nested sub-structures. A client initiates a TLS
handshake by sending a ClientHello message with a set of
supported protocol options. If possible, the server responds
with a ServerHello message and conveys its respective
choice of options. Otherwise, the server typically responds
with an Alert messages.

Authentication of the server (and optionally the client)
as well as the establishment of a shared cryptographic secret
is achieved by exchanging Certificate and KeyExchange mes-
sages. Finally, Finished messages complete the handshake
and confirm its authenticity in retrospect by means of a
signature over a transcript of the full handshake. Several
extension points in the messages allow to retrofit new pro-
tocol features.

3 RELATED WORK

Various generic black-box approaches use a model of the
system under test – either learned from dynamic interac-
tions or provided as additional input – to find vulnerabilities
in network protocol implemenations [32], [33], [34], [35],
[36]. However, the applicability of such approaches tends
to scale poorly with the complexity of the protocol under
consideration; a fact that seems prohibitive for TLS.

De Ruiter and Poll use state machine learning to in-
fer high-level states and transitions in black-box TLS im-
plemenation [37]. Based on visualizations of the learned
state machines bugs are identified via manual investigation.
Similarly, Beurdouche et al. systematically test TLS imple-
mentations for state machine bugs by checking whether
an invalid protocol flow is accepted [38]. Invalid protocol
flows are generated by skipping or repeating messages, or
by hopping between message traces from different protocol
modes. However, both approaches treat protocol messages
as atomic units and do not challenge corresponding parsing
routines.

TLSFUZZER [39] is a TLS test suite allowing to generate
offensive TLS protocol flows with invalid messages. The ex-
pected implementation behaviour has to be specified in the
test definitions explicitly; automated detection of incorrect
implementation behavior does not seem to be supported.

Somorovsky presented a framework called TLS-Attacker
[28], [40]. Besides testing for the susceptibility to known
cryptographic attacks, it allows evaluating TLS server be-
havior by using a fuzzing approach based on dynamic
modifications of message fields. TLS-Attacker detects im-
plementation issues using instrumentation-based runtime
monitoring of the target or by using a TLS context analyzer
that investigates the correctness of TLS protocol flows.

Following the notion of differential testing [23], SFADiff
is a generic approach based on Symbolic Finite Automata
learning to systematically derive differences between a set of
programs [41]. SFADiff has been evaluated successfully in
three different settings, though none of them in the context
of TLS. However, automata learning becomes prohibitively
complex for TLS unless protocol interactions use a very
limited alphabet.

Frankencerts [22] and Mucerts [24] apply differential
testing to the certificate validation logic in TLS implemen-
tations. Where the latter disagree on the validity of one
and the same randomly mutated X.509 certificate, a manual
investigation of the root cause has to follow. However,
neither approach addresses the TLS handshake itself.

Sivakorn et al. presented HVLearn , a black-box approach
for testing hostname verification as part of TLS certificate
validation [26]. From each implementation HVLearn infers
a model that describes the set of all hostnames that match
a given certificate template. Bugs in a model are detected
by finding discrepancies with models of other implementa-
tions or by checking against regular-expression-based rules
derived from the specification.

Petsios et al. presented NEZHA , an approach for
domain-independent differential testing [25]. NEZHA uses
the evolutionary fuzzing engine libFuzzer [42] guided by
various metrics that specifically target differential testing.
Applied to the certificate validation in TLS implementa-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

tions, NEZHA finds significantly more discrepancies than
Frankencerts and Mucerts .

We observe that in the context of TLS, differential testing
has only been applied to the certificate validation (or parts
thereof). Moreover do all previous approaches targeting TLS
seem to involve developing dedicated source code that can
handle the large variety of TLS message types. Not only
does it significantly add to the complexity and the suscept-
ability to bugs of the test tools themselves. It also makes
the tools’ maintenance laborious and binds the test quality
more than necessary to the developer’s thoroughness. In the
following Section 4, we present an approach that allows a
reduction of protocol-specific implementation efforts.

4 GENERIC MESSAGE TREES

Our test approach is based on interacting with TLS im-
plementations via an exchange of TLS protocol messages.
That is, at the very least we need to generate suitable and
sufficiently diverse TLS messages for stimulation. The large
diversity and complexity of TLS protocol messages poses
a considerable challenge here. Moreover do we need to
generate invalid messages just as we need to generate valid
ones. These prerequisite can often only be met by dedicated
and specifically implemented message handling routines.

For this purpose, we propose the concept of Generic
Message Trees (GMTs). GMTs constitute an integral part of
our methodology. In fact, it is the GMT concept that allows
our methodology to be aware of the TLS protocol message
syntax while being protocol-agnostic to the greatest possible
extent.

4.1 The GMT Concept
The concept of GMTs is closely related to the concept of
parse trees, but adds means e.g. for in-place message gener-
ation and manipulation. A GMT is an ordered rooted tree
with typed nodes, which each represent a particular mes-
sage component. A leaf node represents an atomic message
field (e.g. an integer field) that allows a direct translation
from and to its raw (on-the-wire) data representation. An
internal node represents a composite message component
whose content is recursively given by its child nodes.

Throughout this paper, we use the following notation.
Let T denote the set of all finite GMTs (including the empty
GMT ∅ with zero nodes), and, given some GMT t ∈ T , let
Vt denote the set of all nodes of t. Each node v ∈ Vt defines a
subtree v̂ ∈ T that consists of node v and all its descendants.
Furthermore, let S be the set of all finite octet (byte) strings.
The length (number of octets) of an octet string s ∈ S is
referred to as |s|.

As an example, Fig. 2 shows an excerpt of the GMT
representation of a TLS ClientHello message.

4.2 Dissection and Serialization
Dissection denotes the process of translating the raw data
representation s ∈ S of some message into its GMT repre-
sentation t ∈ T . Dissection can be expressed as a function
D : S → T . The reverse operation is called serialization and
is achieved by traversing the GMT depth-first and concate-
nating the raw data representation of each leaf node v ∈ Vt.
Serialization can be expressed as a function S : T → S .

Observe that by their definition, GMTs are an inherently
generic concept. Most format-specific aspects are essentially
abstracted by the dissection function D. Therefore, D is
highly dependent on the format definition of the message to
be dissected. This is in contrast to the serialization function
S, which is fully generic.

4.3 Deriving Dissection Functions
Obviously, the benefits of GMTs were small if there was no
efficient and automated way to obtain implementations of
D. Our approach to achieve this is based on the TLS Presen-
tation Language (TPL). TPL is used more or less consistently
throughout the TLS specification for the purpose of defining
the content and encoding of TLS protocol messages [1]. TPL
comprises basic message fields (i.e. integer and enumeration
fields) as well as lists (also referred to as vectors) of fields,
constructed (composite) types, and variants (i.e. dynamic
choices within constructed types). Message definitions in
TPL use a syntax quite close to that of the “C” programming
language.

In the light of the aforementioned, TPL presents itself as
an interesting candidate for automatically deriving imple-
mentations of D. However, as TPL suffers from a somewhat
casual and informal definition, for our purposes we use
eTPL, an enhanced version of TPL [43]. eTPL features an
improved expressiveness and is suitable for an automated
generation of parsers, i.e. implementations of D, and other
format-specific routines. As a consequence, the task of man-
ually implementing TLS-specific details can be minimized.
It essentially boils down to copying the TPL-based message
definitions from the TLS specification and using eTPL con-
structs to complement the definition by those features of the
message format that TPL fails to cover.

4.4 GMT Operators
Given the generic nature of GMTs we define a GMT operator
O as an abstract manipulation agent acting on a GMT t. An
operator O is invoked on a certain GMT node v ∈ Vt, but
may affect any node in the GMT. For example, the node an
operator is invoked on may merely serve as a starting point
for sophisticated operations walking the whole GMT.

Not every operator is applicable to every node in a
meaningful way. Thus, each operator O comes with a filter
function FO : v 7→ f ∈ {0, 1}, which returns 1 if operator O
may be invoked on node v, and 0 otherwise.

Observe that certain operations on a GMT or its nodes
change the GMT in such a way that redissecting it (i.e. dis-
secting the tree’s serialization) yields a structurally different
GMT, i.e. D(S(t)) 6= t. Such redissection instability of a GMT
is primarily caused by a violation of dependencies between
message fields (e.g. out-of-bounds lengths) 1.

5 METHODOLOGY

As the integral component of our methodology for testing
implementations of TLS – the handshake in particular – we
design a fuzzing algorithm that is capable of generating

1. Redissection instability turns out to be a property worth consid-
ering when tracing the code path an independent parser is following
while processing a GMT’s serialization.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

16 03 01 01 2C 01 00 01 28 03 03 40 C7 0E 24 30 01 B9 6D 8C 63 68 77 38 69 64 32 D3 E6 F9 49 10 7A AB AD 84 50 CD FF D6 A2 66 E4 00 00 92 C0 30 ...

{0:TLSRecord} TLSRecord

|--[0:type] RecordType | 16 | handshake(22)

|--[1:version] ProtocolVersion | 03 01 | TLSv1(769)

|--[2:length] Integer | 01 2C | 300

 --{3:msg} HandshakeMessage

 |--[0:type] HandshakeType | 01 | client_hello(1)

 |--[1:length] Integer | 00 01 28 | 296

 --{2:msg} ClientHello

 |--[0:version] ProtocolVersion | 03 03 | TLSv1_2(771)

 |--[1:random] OpaqueBlob | 40 C7 0E 24 30 01 B9 6D |

 | | 8C 63 68 77 38 69 64 32 |

 | | D3 E6 F9 49 10 7A AB AD |

 | | 84 50 CD FF D6 A2 66 E4 |

 |--[2:session_id_length] Integer | 00 | 0

 |--[3:session_id] OpaqueBlob | |

 |--{4:cipher_suites} ClientHello_cipher_suites

 | |--[0:_N] Integer | 00 92 | 146

 | --{1:_V} DynamicVector

 | |--[0:CipherSuite] CipherSuite | C0 30 | TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384(49200)

Fig. 2. Illustration of the raw data representation (octet string in hexadecimal notation above the horizontal line) as well as the GMT representation
(tree structure below the horizontal line) of the first part of a TLS ClientHello message. GMT nodes are printed in the same order as they are
traversed for serialization. The four columns of the GMT’s visualization reflect (from left to right) the tree structure, the nodes’ types, the leaf nodes’
raw data representations, and a human-readable representation (where applicable), respectively.

highly diverse corpuses of test messages. Our algorithm is
designed such that the generated messages are very effective
in provoking response discrepancies among different TLS
implementations. In the spirit of differential testing, we then
use such discrepancies as means to identify bugs in the
implementations under test.

Actually, fuzz testing typically involves monitoring the
test target for evidence of faulty behavior; for example us-
ing code instrumentation or dynamic memory monitoring.
However, such measures may not be possible, e.g. because
no source code is available. Moreover may some bugs, e.g.
semantic bugs [44], not become manifest in the form of
program crashes or invalid memory accesses. Therefore,
combining differential testing with fuzz allows to detect less
obvious failure cases.

With our methodology we try to close the gap between
model-based approaches [23], [32], [33], [34], [35], [36], [37]
– for which TLS is prohibitively complex, unless protocol
interactions are significantly simplified – and approaches
that are based on explicit test oracles [28] or hand-crafted
protocol interactions [39]. In order to support settings that
do not allow code instrumentation or dynamic memory
monitoring, we intentionally refrain from using techniques
in the design of our methodology that would break its black-
box feature.

In the following, we use the term implementation peer
group, or simply peer group, to refer to the set of protocol
implementations that receive the same stimulation input
and of which responses are compared among each other.
Test corpus refers to a set of individual TLS messages which
are used to stimulate implementations in the peer group.

5.1 Input Generation

Our fuzzing algorithm is based on the manipulation of
template TLS messages. To this end, it makes use of the
concept of GMTs and corresponding manipulation opera-
tors as introduced in the previous Section 4. In contrast to
other black-box fuzzing approaches we are aware of, our

approach allows to cover the space of mostly-valid TLS
messages with minimal implementation effort, yet very high
efficiency.

5.1.1 Manipulation Operators
We define the following set of deterministic operators. Where
applicable, v′ refers to node v after the operator application.

• Voiding operator Ovoid: Replace subtree v̂ by an
empty leaf node. This operation effectively removes
all contributions of v̂ to the GMT’s serialization,
but retains a leaf node as a place holder potentially
important for subsequent operations.

• Removing operator O rem: Fully remove subtree v̂.
The effect of this operator on the serialization of node
v is similar to that of Ovoid.

• Duplicating operator Odupl: Duplicate subtree v̂ and
insert the copy as a sibling, i.e. as a child of v’s parent
to the right of v.

Additionally, we define several fuzzing operators.

• Truncating fuzz operator O fuzz
trunc: Remove and trun-

cate the nodes of subtree v̂ such that its serialization
after the operator’s application is truncated to length
n, i.e. |S(v̂′)| = n. The length n after truncation
is chosen uniformly at random between zero and
|S(v̂)| − 1.

• Integer fuzz operator O fuzz
int : Set the integer i rep-

resented by leaf node v to a new value i′. In full
range mode, i′ is chosen uniformly at random between
zero and 2w − 1, where w is the integer field’s bit
width. In proximity mode, i′ is chosen uniformly at
random between zero and 2 · i + 1. Proximmity
mode helps keeping integers close to typical values.
For each application of O fuzz

int , full range mode or
proximity mode are chosen at random with equal
probabilities. This operator is only applicable to leaf
nodes representing integers.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

• Content fuzz operator O fuzz
cont : Randomize the raw

data representation of leaf node v. The length is
either left unchanged (update-only mode) or chosen
uniformly at random between zero and 2|S(v̂)| +
1 (resize-and-update mode). For each application of
O fuzz

cont , the choice between update-only mode and
resize-and-update mode is made at random with
equal probabilities. For |S(v̂)| = 0 resize-and-update
mode is chosen with a probability of one. This oper-
ator is only applicable to leaf nodes.

• Appending fuzz operator O fuzz
app : Insert a new leaf

node with randomized content as a child of node v.
The raw data length is chosen uniformly at random
between one and four. This operator is only applica-
ble to internal nodes.

• Synthesizing fuzz operator O fuzz
syn : Replace the sub-

tree v̂ by a semi-randomly synthesized subtree that
obeys the message syntax inherent in the type of
node v. Despite synthesizing syntactically correct
message, O fuzz

syn is not aware of the corresponding
semantics.

Note that, conceptually, O fuzz
syn is the most powerful op-

erator. Based on the dissection functions derived from eTPL
definitions and implanted in GMT nodes, it is capable of
synthesizing message components that are not present in
the template message. In this way, any TLS extension may
be synthesized in a syntactically correct way.

5.1.2 Resolving Inconsistencies (Repairing)
The application of certain manipulation operators is likely
to destroy the internal consistency of a GMT. For instance,
when a variable-length message component is truncated, the
corresponding length field should be updated.

Obviously, there is a trade-off between intentionally
generating inconsistent messages (trying to challenge an
implementation’s input validation routines) and avoiding
message inconsistency (trying to prevent an early rejection
of invalid messages).

Therefore, we define a repair algorithm resolving incon-
sistency among the nodes of a GMT on a semi-random basis
(see Fig. 3). The algorithm proceeds by starting at some node
v and traversing the GMT towards its root. For each node
on this path, local inconsistencies among the node’s direct
children are resolved using a node-specific repair routine2. If
run in randomized mode, nodes are skipped randomly with
a probability of p = 1/2, giving rise to incidental consistency
violations within the GMT.

5.1.3 Input Generation Algorithm
The core of our algorithm for TLS message generation is
presented in Fig. 4. It starts from the GMT representation
of a template message and repeatedly applies a randomly
chosen manipulation operator to a suitable, randomly se-
lected GMT node. After each operator application (exclud-
ing O fuzz

int), the repair algorithm is invoked on the node to
which the previous operator has been applied. The number
of operator applications is implicitly chosen at random;

2. These repair routines are automatically derived from the eTPL-
based message definitions just as the dissection functions are.

1: procedure REPAIR(v, randomize)
2: while v 6= ⊥ do . Repeat until done with root
3: if not randomize or RND({true, false}) then
4: REPAIRLOCAL(v)
5: end if
6: v ← PARENTOF(v) . One step towards root
7: end while
8: end procedure

Fig. 3. The repair algorithm used for restoring consistency between
nodes within a GMT. Starting from node v, the algorithm moves to-
wards the GMT’s root. In deterministic mode (randomize = false), for
each node on the path towards the root local inconsistency among
each node’s direct children are resolved using a node-specific function
REPAIRLOCAL. In randomized mode (randomize = true), nodes are
skipped randomly with a probability of one half (RND function call).
RND(X) returns an element x ∈ X uniformly drawn at random from
the set X. PARENTOF(v) returns the parent node of v or ⊥ if v is the
root node.

after each iteration the algorithm stops with a probability
of p = 1/2. The serialization of the final GMT is the message
to be used for stimulation3.

In order to avoid the generation of bit-identical dupli-
cates, we keep a list of the hashes of previously generated
messages. Having said that, this list is the only state our
generation algorithm holds.

Unfortunately, unless recording internet traffic at large
scale, obtaining a large corpus of TLS template messages is a
nontrivial problem. As we show in Section 6, our algorithm
turns out to be effective even if only a single template
messages is provided.

5.2 Response Analysis

In the following, we describe the differential analysis of
responses received from the implementations in the peer
group upon stimulation.

5.2.1 Response Reduction
As a consequence of testing TLS protocol implementations,
the responses we have to deal with are complex TLS
protocol messages that lack straightforward comparability.
For differential testing, it is therefore crucial to define a
reasonable metric that can assess whether responses are
discrepant or in agreement – potentially despite differences
in their raw data representations. We abstract the concrete
choice of this metric by using a reduction function R that
maps a TLS implementation’s response, represented as a
GMT t ∈ T , to a reduced response set R, i.e. R : T → R.
Responses tA, tB ∈ T from two implementations A and B
are considered in agreement under reduction function R if
R(tA) = R(tB) and discrepant otherwise4.

In the following, let P denote the implementation peer
group and let X refer to a test corpus, i.e. a set of stimuli
x ∈ X . Furthermore, let ti,x denote the GMT representation

3. Note that most protocol-specific dependencies of our algorithm are
encapsulated in the corresponding GMT dissection and repair routines.

4. It is clear that the choice of a reduction function R affects both the
sensitivity to real implementation issues as well as the susceptibility to
innocuous discrepancies. Optimizing the choice of R is out of the scope
of this paper though.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

1: function FUZZ(v0) . Fuzz v̂0, the subtree whose root is v0
2: repeat
3: o← RND({Ovoid, O rem, Odupl, O

fuzz
trunc, O

fuzz
int , O

fuzz
cont, O

fuzz
app , O

fuzz
syn }) . Select an operator at random

4: v ← RND({v ∈ Vv̂0
|Fo(v) = 1}) . Select a suitable node in v̂0 at random

5: APPLYOPERATOR(o, v) . apply operator o to node v

6: if o 6= O fuzz
int then . Unless an integer field has been fuzzed ...

7: randomize← RND({true, false})
8: REPAIR(v, randomize) repair GMT (e.g. update length fields)
9: end if

10: if o ∈ {Odupl, O
fuzz
syn } and RND({true, false}) then . Duplicated or synthesised subtrees ...

11: FUZZ(v) may be fuzzed recursively
12: end if

13: until RND({true, false}) . The number of operator applications becomes approx. exponentially distributed
14: return v0 . Return the manipulated (sub)tree
15: end function

Fig. 4. The fuzzing algorithm used to semi-randomly generate mostly-valid TLS messages. The algorithm starts from the GMT representation
v0 of a template message and repeatedly applies a randomly selected manipulation operator to a randomly selected node. In-between operator
applications message inconsistencies are resolved on a semi-random basis using the repair algorithm shown in Fig. 3. RND(X) returns an element
x ∈ X uniformly drawn at random from the set X.

of the response obtained from implementation i ∈ P when
stimulated with stimulus x ∈ X . We define the response
signature as the tuple of implementation responses reduced
under some R as

TR(P, x) =
〈
R(t1,x), . . . , R(t|P|,x)

〉
. (1)

Clearly, we are most interested in cases where a single
stimulus induces discrepant responses in the peer group.
As an indicative measure, we define the number of unique
responses obtained for a single stimulus as

NR(P, x) =
∣∣{R(ti,x) | i ∈ P

}∣∣ . (2)

Obviously, 1 ≤ NR(P, x) ≤ |P| with NR(P, x) = 1 if5

and only if all implementations in P are in agreement with
respect to R.

5.2.2 Identification of Root Causes
Once a response discrepancy has been detected, determin-
ing its root cause is a nontrivial problem. For the time
being this remains as a manual task for the human tester.
We sketch some ideas on how to address this challenge in
Section 8 about future work.

Note that behavorial discrepancies may not only be due
to implementation bugs. As alternative causes dissimilar
features or configurations of the implementations as well
as different interpretations of the specification need to be
considered before attributing discrepant implementation be-
havior to a bug.

5.3 Capabilities and Limitations

In principle, our approach allows detecting any implemen-
tation issue that gets provoked by the stimulation input
and then become manifest in an implementation’s response

5. We deliberately ignore the somewhat degenerate case of an empty
peer group here.

behavior. That is, it does not require an implementation to
crash or to perform an invalid memory access. Assuming
the reduction function does not “map away” these de-
viations, an observable deviation of an implementation’s
output from those of the other implementations is sufficient.
It is this fact that yields sensitivity to semantic bugs which
might otherwise elude detection.

On the other hand, differential testing is generally blind
with respect to defects that are present in all implemen-
tations in the peer group or that result in identical or
indistinguishable (mis)behavior. Furthermore, silent issues
that never affect the implementation’s response behavior
(e.g. memory leaks) stay unnoticed, unless the stimulation
provoking them lets other implementations behave observ-
ably different.

Currently, interactions with the TLS implementations
under test are given by distinct and reiterate stimulus-
response pairs. Our test system acts as a TLS client by
repeatedly sending semi-randomly generated ClientHello
messages over fresh transport connections (stimulus) and
observing the TLS servers’ responses. While this consti-
tutes an obvious restriction (it only tests the ClientHello
processing routines within TLS servers), we see our ap-
proach as presented herein only as the first step towards
fully interactive differential testing of black-box TLS protocol
implementations, covering both servers and clients as well
as the full TLS handshake process. Dealing with the stateful
nature of TLS and its use of cryptography constitutes the
major challenge in that direction (see also Section 8 on
prospects and future work).

6 EVALUATION

In this and the following Section 7 we report on
our results obtained from applying our test approach

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

OpenSSL server

instances

BoringSSL server

instances

MatrixSSL server

instances

mbedTLS server

instances

WolfSSL server

instances

Stimuli

T
e
s
t A

g
e
n

t

Stimuli generation

algorithms

Responses

Response

analysis

Fig. 5. Illustration of the experimental setup that we use to compare
our test approach against AFL, TLS-Attacker , and NEZHA. Stimuli from
different pre-generated test corpuses are used to stimulate five different
TLS server implementations via their standard network interfaces. For
each TLS implementation we launch 20 independent instances in order
to speed up the test process through parallelization. Implementation
responses are recorded for further analyses, but do not feed back to
input stimulation. All components run on a single local machine.

to OpenSSL 1.0.2h , BoringSSL 6, MatrixSSL 3.8.4 ,
mbedTLS 2.2.0 , and WolfSSL 3.9.8 . That is, our peer group
P is given by these five implemenations. The list includes
implementations for both PC as well as embedded plat-
forms. We refrain from using more than five implementa-
tions so as to keep the complexity of investigating response
discrepancies at a manageable level7.

In order to evaluate the efficiency and effectiveness of
our generation algorithm, we compare our approach to
other methods, i.e. American Fuzzy Lop (AFL) [27], TLS-
Attacker [28], and NEZHA [25].

6.1 Experimental Setup

Our experimental setup is sketched in Fig. 5. Using pre-
generated test corpuses, we stimulate each TLS server im-
plementation in our peer group and record corresponding
responses for further analyses (see Section 6.1.2). Imple-
mentation behavior does not feed back to input stimula-
tion. Additionally, we determine the code coverage in Ma-
trixSSL 3.8.4 using gcov version 4.8.2 for each test corpus
as a whole.

All components of our setup run on a single local ma-
chine (standard office PC, Linux-3.11-2 64 bit, Intel Core i5-
4590, 8 GB RAM). TLS server implementations are compiled
with gcc version 4.8.2 and use a similar compile and runtime
configuration. The runtime configuration includes one and

6. The version we use corresponds to commit 78684e5b222645828
ca302e56b40b9daff2b2d27 on branch 2883 of the official Bor-
ingSSL Git repository [45].

7. The complexity of telling apart interesting from benign response
discrepancies suffers from scaling unfavorably with the size of the peer
group P . Addressing this scalability issue in the context of TLS is going
to be the subject of future work.

the same X.509 RSA server certificate and TLS 1.2 as the
highest supported protocol version.

Communication with the TLS server implementations
proceeds via the loopback network interface. To speed up
the process, we parallelize test interactions by launching 20
independent instances of each server implemenation in the
peer group. In this way, our setup manages to handle on
average approx. 55 stimuli (i.e. 55 × 5 server stimulations)
per second using a per-instance response timeout of 100 ms.

6.1.1 Input Generation
For each generation method, i.e. our algorithm, AFL, TLS-
Attacker , and NEZHA we build 100 independent test cor-
puses with 100’000 stimuli each.

As a start we use our generation algorithm described
in Section 5.1.3 to generate a corresponding set of test cor-
puses. As template message we use one single ClientHello
message with a length of 305 octets generated by OpenSSL ’s
command-line client (version 1.0.2h). The template Client-
Hello message offers TLS 1.2 as highest supported protocol
version and lists 72 supported cipher suites. Furthermore,
it contains five different extensions: Supported point formats
(with three entries) and Supported Elliptic Curves (with 25
entries) [46], Supported signature algorithms (with 15 entries),
Session ticket (empty) [47], and Heartbeat [48]. Given these
settings, our algorithm generates approx. 500 TLS messages
per second.

Additionally, we use AFL version 2.40b run against an
appropriately instrumented instance of MatrixSSL 3.8.4 to
generate a similar set of independent AFL test corpuses.
AFL is provided with the same single ClientHello message
that we also use to seed our generation algorithm. We let
AFL skip determinstic generation steps as we expect those
to introduce a bias in the test corpus8.

Using the TLS-Attacker framework [28] we build a set
of TLS-Attacker test corpuses based on the ClientHello
messages emitted by TLS-Attacker . We run a slightly modi-
fied9 version of TLS-Attacker against OpenSSL 1.0.2h. Note
that TLS-Attacker generates a large number of TLS protocol
flows where ClientHello messages differ only in the Clien-
tRandom field. In order to allow for a fair comparison, we
therefor drop those quasi-duplicates before building a test
corpus.

Finally, we let NEZHA [25] run against the server imple-
mentations in our peer group to generate a set of NEZHA
test corpuses. We let NEZHA be guided by its output δ-
diversity metric using distinct return codes for a ServerHello
response, each different type of Alert message, and no
response at all within a timeout of 100 ms10.

Note that, in contrast to our approach, AFL, TLS-
Attacker , and NEZHA use life interactions with one or more
TLS implementations to guide the input generation process.
Nevertheless does our evaluation in all cases use the setup

8. AFL would run much more than 100’000 determinstic generation
steps.

9. We added a few lines in the framework’s source code that allow
recording the generated ClientHello messages on disk. Our version
is based on commit fd74472c9950c4415a88934a3c21808ac3b078
d3 from TLS-Attacker’s official GitHub repository [40].

10. This reduction scheme is equivalent to the reduction function R2

defined in Eq. (5) of the following Section 6.1.2.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

shown in Fig. 5 to consistently record implementation re-
sponses based on previously generated test corpuses.

6.1.2 Evaluation Metrics
As our primary evaluation metric, we define the number of
unique response discrepancies ∆R as

∆R(P,X) =
∣∣{TR(P, x) | x ∈ X : NR(P, x) > 1

}∣∣ (3)

with TR(P, x) as defined in Eq. (1) and NR(P, x) as defined
in Eq. (2). ∆R(P,X) is a measure of the capability of test
corpus X to induce distinct discrepancies among the peer
group P ’s implementations11.

Actually, we are not only interested in the total number
of unique response discrepancies induced by a test corpus
X as a whole. Rather, we are mostly interested in cumulative
numbers obtained from gradually increasing the number of
stimuli taken from the test corpus. Therefore, by X|n we
denote a truncated test corpus that only consist of those n
stimuli x ∈ X that have been generated first. We then use
∆R(P,X|n) as a function of n with 0 ≤ n ≤ |X |.

In accordance with Section 5.2.1 we define two response
reduction functions R1,2 : T → R1,2 that feature dif-
ferent output granularity. R1 has a binary outcome with
R1 = {“SH”, “Abort”}. It reflects whether or not a server
responds with a ServerHello message within a timeout of
100 ms, i.e.

R1(t) :=

{
“SH” if t ≡ ServerHello

“Abort” otherwise.
(4)

R1 is particularly suitable to find those stimuli where all im-
plementations except one refuse to continue the handshake.
In such cases, the deviant implementation is most likely to
miss an important input validation check.

As a more fine-granular option, R2 additionally takes
into account error information in case no ServerHello mes-
sage is received within the 100 ms timeout. With

R2 = {“SH”, “AL/0”, . . . , “AL/255”, “E”}

we set

R2(t) :=

“SH” if t ≡ ServerHello

“AL/x” if t ≡ Alert of type x

“E” if t = ∅ (empty).

(5)

Note that R2(t) = “E” either if a server silently closes the
connection on TCP level or if it does not reply at all within
the 100 ms timeout.

As a second evaluation metric, we use the code (line)
coverage determined in MatrixSSL 3.8.4. For each test cor-
pus, the code coverage is determined over stimuli from the
test corpus as a whole. Note that we restrict the coverage
analysis to those modules in MatrixSSL that are responsible
for parsing incoming TLS messages12.

11. Note that if the condition NR(P, x) > 1 were dropped, the
definition of ∆R would be identical to the output δ-diversity defined
by Petsios et al. [25].

12. Concretely, these are sslDecode.c (parsing TLS records),
hsDecode.c (parsing handshake messages), and extDecode.c (pars-
ing ClientHello and ServerHello extensions) from the MatrixSSL
sources. The code considered amounts to 1617 executable lines in total.

TABLE 1
Average code (line) coverage determined in MatrixSSL 3.8.4

Test approach Average line coverage [%]
Our approach 26.6 ± 0.3
AFL 25.7 ± 0.4
NEZHA 24.0 ± 0.6
TLS-Attacker 21.9 ± 0.2

6.2 Results
In this section we present the result of our evaluation using
the metrics presented in the previous Section 6.1.2.

6.2.1 Unique Response Discrepancies
Fig. 6 shows the average of ∆R(P,X|n) as defined in
Eq. (3) and its standard deviation plotted individually for
our approach, AFL, TLS-Attacker , and NEZHA as well
as the two reduction functions R = R1 and R = R2

defined in Eqs. (4) and (5), respectively. For each generation
method, the average is computed over the respective 100
test corpuses.

It turns out that our generation algorithm is more ef-
fective in provoking discrepant resonses than AFL, TLS-
Attacker , and NEZHA are. Considering test corpuses as
a whole (untruncated), our approach on average generates
17 % more (for R = R1) and 76 % more (for R = R2)
unique response discrepancies than the respective second
most effective approach.

The advantage of our approach seems to be present at
least for test corpuses not significantly larger than 100’000
stimuli. However, recall that our approach basically is state-
less. ∆R is therefore likely to run into saturation at some
point. In contrast to that follow the other approaches either
an evolutionary (AFL and NEZHA) or a partially determin-
stic strategy (TLS-Attacker), making the long-term behavior
hard to predict. An illustrative example is the abrupt jump
in ∆R at n ≈ 30′000 for TLS-Attacker .

Furthermore, it is a notable observation that in our study
AFL clearly outperforms NEZHA . This is in contrast to
what the authors of NEZHA found when applying NEZHA
to the validation routines of X.509 certificates in TLS imple-
mentations [25]. We surmise that our observation is due to
the fact that we use only one single TLS message to seed
the generation process, whereas in the case of certificate
validation AFL and NEZHA have been given 1000 template
certificates.

6.2.2 Code Coverage
Just as for ∆R, the average code (line) coverage in Ma-
trixSSL 3.8.4 and its standard deviation is computed over
the 100 test corpuses of each generation method individu-
ally.

The resulting numbers are given in Table 1. Reaching
approx. 26.6 % of the executable lines in the correspond-
ing modules of MatrixSSL 3.8.4, test corpuses generated
with our algorithm achieve a code coverage slightly higher
than that achieved with any other evaluated approach
(≤ 25.7 %).

Recall that our evaluation is restricted to server stimu-
lations via ClientHello messages. The fact that the achieved

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 20000 40000 60000 80000 100000
Truncated test corpus size n

0

5

10

15

20

25

30

Av
g.
 #
 u
ni
qu

e
re
sp
. d

is
cr
p.
 ∆

R
1
(P
,X
| n
)

Our approach
American Fuzzy Lop

TLS-Attacker
NEZHA

(a) Reduction to R1 = {“SH”, “Abort”}

0 20000 40000 60000 80000 100000
Truncated test corpus size n

0

50

100

150

200

Av
g.
 #
 u
ni
qu
e
re
sp
. d

is
cr
p.
 ∆

R
2
(P
,X
| n
)

Our approach
American Fuzzy Lop

TLS-Attacker
NEZHA

(b) Reduction to R2 = {“SH”, “AL/0”, . . . , “AL/255”, “E”}

Fig. 6. The average number of unique response discrepancies ∆R(P,X|n) for ∆R as defined in Eq. (3), plotted as a function of the truncated test
corpus size n. ∆R is plotted for test corpuses generated with our approach (red solid line), AFL (green dotted line), TLS-Attacker (blue dashed
line), and NEZHA (black dash-dotted line). The average is taken for each generation method individually over the respective 100 test corpuses;
the grey bands represent the corresponding standard deviation. The plot is given for the two reduction functions R = R1 (left) and R = R2 (right)
defined in Eqs. (4) and (5), respectively.

code coverage is considerably below 100 % is due to most of
the unreached lines in MatrixSSL being responsible for pars-
ing incoming messages other than ClientHello messages.

7 A STUDY OF SOME IDENTIFIED BUGS

In the following, we briefly study some bugs in Ma-
trixSSL 3.8.4 and WolfSSL 3.9.8 that we revealed with
the help of our test approach. Among these bugs are two
more or less independent ones in MatrixSSL 3.8.4 that in
combination we consider as a serious vulnerability.

In total, we identified 16 issues attributable to distinct
root causes with varying impact on security or interoper-
ability. We refrain from listing every single issue but discuss
the essential aspects of our findings in Section 7.3. In all
cases did we responsibly disclose our findings to the corre-
sponding developers. In the meanwhile fixes for all serious
and some minor bugs have been released.

For the rest of this section we drop the version num-
bers and simply use MatrixSSL and WolfSSL to refer to
MatrixSSL 3.8.4 and WolfSSL 3.9.8, respectively.

7.1 Mishandling of Length Fields
A particularly interesting – and apparently very frequent
– class of issues in TLS implementations is related to an
incorrect or inconsistent handling of the length fields of
nested message components during parsing. As a result, the
faulty parser may misinterpret the message content or may
even be vulnerable to attacks.

Fig. 7 illustrates situations that can expose such parser
misbehavior. In a well-formed message the length of a
message component (the outer frame) is consistent with
the lengths of its nested components (the inner frames).
An overflow situation with excess data arises if the length of
the outer frame exceeds the total length of its inner frames.
In contrast to that does an underflow situation with deficit

Outer frame

Normal

Over ow

Under ow

De cit data

Excess data

Inner frame

L1L1

L2

L2

L2

L2

L2

L2

Fig. 7. Illustration of situations that may expose a message parser’s
mishandling of the length fields of nested message components. While
normally redundant length fields are consistent, inconsistencies result in
an overflow situation with real excess data (data provided by the outer
frame of which the inner frame cannot make sense) or an underflow
situation with deficit data (data the inner frame expects but the outer
frame does not provide). In the absence of message fragmentation
neither an overflow nor an underflow situation is expected or even
acceptable.

data arise if the total length of the inner frames exceeds the
length of the outer frame. Explicitly designed to do so, our
algorithm presented in Section 5.1 generates messages that
randomly exhibit overflows and underflows situations in
various message parts.

In the following sections, we briefly report on two corre-
sponding bugs we found in MatrixSSL and WolfSSL .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Lhs

ClientHello

Lrec

Lext

Appended

by MITM

Unauthenticated

ClientHello (processed by MatrixSSL)

Updated by MITM

Lext

Injected Extensions

Lhs

Record payload

ExtensionsRandom/Ciphers/...

Handshake Transcript (seen by MatrixSSL)

Original ClientHello

Lrec

Fig. 8. Illustration of the vulnerability in MatrixSSL 3.8.4 that allows a
man-in-the-middle (MITM) attacker to inject unauthenticated ClientHello
extensions into a handshake between a MatrixSSL server and an arbi-
trary TLS client without either side noticing. The attacker simply appends
data to the TLS record and only updates the length in the record’s
header. The vulnerability is a result of an incorrect/inconsistent treat-
ment of length fields in the ClientHello processing routines of MatrixSSL
3.8.4. It allows to make the server process an extended ClientHello
message while only the original ClientHello message contributes to the
handshake transcript.

7.1.1 MatrixSSL: Unauthenticated ClientHello Extensions
Because of its insufficient adherence to and inconsistent
treatment of length fields when parsing ClientHello mes-
sages, MatrixSSL allows a man-in-the-middle (MITM) an
unnoticed injection of ClientHello extensions into the TLS
handshake between a MatrixSSL server and an arbitrary
TLS client.

Concretely, on the one hand, MatrixSSL does not use the
length specified in the header of an incoming handshake
message to restrict the processing of a ClientHello message,
but instead simply assumes that the end of the ClientHello
message is aligned with the end of the record. On the other
hand, MatrixSSL ignores the field specifying the length of
the ClientHello extension list, assuming that the end of
the extension list is aligned with the apparent end of the
ClientHello message13.

Having said that, MatrixSSL does use the handshake
header’s length field to restrict what contributes to the hand-
shake transcript. As illustrated in Fig. 8, this opens up an op-
portunity to a MITM to inject unauthenticated ClientHello
extensions into any handshake with a MatrixSSL server by
simply appending data to the TLS record containing the
ClientHello message and only updating the record’s length
field.

Granting such power to a third party doubtlessly vio-
lates the assumptions that the security guarantees of TLS are
based on. However, the severity of this vulnerability heav-
ily depends on the capabilities of the injected extensions.
Considering the list of extensions supported by MatrixSSL ,
we currently do not see an obvious way to exploit this
vulnerability. This assessment is not based on a thorough
analysis, though.

13. Note that because of the first issue, MatrixSSL effectively reads
ClientHello extensions up to the end of the TLS record.

7.1.2 WolfSSL: Erroneous Processing of Excess Data

Similarly to MatrixSSL , WolfSSL does not fully respect the
length of a ClientHello message as specified in the hand-
shake header. When parsing a ClientHello message, excess
data within the ClientHello message (i.e. data following the
ClientHello extension list) is treated as the beginning of a
subsequent handshake message. Though this bug in Wolf-
SSL does not seem to induce a security issue, it certainly is
in conflict with the TLS specification.

Note the difference to the corresponding issue in Ma-
trixSSL . While WolfSSL treats excess data as if it belongs to
a lower level of nesting (the record layer), MatrixSSL treats
excess data as if it belongs to a higher level of nesting (the
extension list).

7.2 Faulty Parameter Negotiation

In the course of a TLS handshake, a client typically proposes
a list of protocol parameter options to the server, from which
the server then makes a choice of its preference. Lacking a
mutually supported option, the server actively aborts the
handshake by sending an appropriate alert message. This
mechanism applies e.g. to cipher suites, compression meth-
ods, and other parameters. Note that, while still selected
dynamically, the protocol version is negotiated in a different
way 14.

We give two examples of flawed negotiation implemen-
tations in the following.

7.2.1 MatrixSSL: Protocol Version Downgrade

Under certain circumstances, a MatrixSSL server does not
select the highest TLS protocol version available between
the client and the server. If the protocol version field in
a ClientHello message (the field which informs the server
about the highest version the client supports) is set to a
version beyond TLS 1.2 (e.g. 0x0304 corresponding to TLS
1.3), the MatrixSSL server selects TLS 1.1, even though TLS
1.2 is supported by both client and server.

The security impact of this deviation from the specifica-
tion currently seems negligible.15 However, it might become
relevant when TLS 1.2 turns out to be insecure in a way
that an attacker can affect the handshake between legitimate
parties.

7.2.2 Nonobservance of Supported Compression Methods

The server implementation of MatrixSSL , WolfSSL , and
mbedTLS 2.2.0 do not consider the list of compression
methods offered by the client in the ClientHello message
when making the corresponding choice. Rather, these im-
plementations select the no compression option even if not
listed by the client.

There is no impact on security resulting from this
(mis)behavior.

14. Actually, with TLS 1.3 negotiation of the protocol version is going
to be harmonized with the usual negotiation mechanism as described
before [31].

15. TLS specification states that “If a TLS server receives a ClientHello
containing a version number greater than the highest version supported by
the server, it MUST reply according to the highest version supported by the
server” [1].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

7.3 Discussion
As indicated before, the issues described in the previous
sections are not the only we found.

For instance, there are several further cases where TLS
implementations fail to systematically validate the length
fields of nested message components. This class of imple-
mentation flaws therefore presents itself as a quite common
one. To some extent we attribute this to the fact that only the
draft version of the upcoming TLS 1.3 explicitly addresses
these issues in a general statement16. Previously released
specifications are fairly faint in that respect as the general
case is somewhat inauspiciously embedded in a very spe-
cific statement on ClientHello parsing17.

Presumably, further issues we found are due to the TLS
specification not being very explicit in certain respects, too.
Generally, it tends to be vague with regard to a receiver’s
liability to enforce rules it imposes on senders. This effec-
tively forces each individual implementor to balance the
pursuits of robustness, security, and interoperability on his
or her own18. Moreover, in some cases the specification
does not determine default parameters to be used when
parameter negotiation as part of the protocol is incomplete.
Fortunately, the current draft specification of the upcoming
version 1.3 of TLS eliminates at least some of these deficien-
cies [31].

Note that, even though the immediate security impact of
certain implementation misbehavior might be negligible, it
can legitimately be considered undesirable from a meticu-
lous point of view. In principle even subtle and seemingly
benign misbehavior might eventually by turned into an
attack-driving lever if used elaborately by a smart attacker
[18], [53].

8 PROSPECTS AND FUTURE WORK

Our findings seem to indicate that differential testing ap-
plied to the TLS handshake protocol is a promising direction
for improving the quality of TLS implementations. That
said, several limitations of our current approach should and
are going to be addressed in future work.

8.1 Fully Interactive Differential Testing
We consider the realization of fully interactive differential
testing of the TLS handshake as the most interesting direc-
tion for future work. It would allow going beyond merely

16. The general statement is: “Peers which receive a message which
cannot be parsed according to the syntax (e.g., have a length extending beyond
the message boundary or contain an out-of-range length) MUST terminate the
connection with a ”decode_error” alert.” [31].

17. Here, the TLS specification states: “A server MUST accept Client-
Hello messages both with and without the extensions field, and (as for all
other messages) it MUST check that the amount of data in the message
precisely matches one of these formats; if not, then it MUST send a fatal
”decode_error” alert” [1]. Note that being very strict with regards to
such validation checks is in a way in conflict with Postel’s Law which
demands: “Be conservative in what you do, be liberal in what you accept
from others” [49]. However, in addition to the debatable applicability
of Postel’s Law to security protocols [50], [51], allowing superfluous
excess data in protocol messages unnecessarily provides an attacker
with extra means for affecting the handshake transcript and exploiting
transcript collisions [28], [52].

18. As a potentially positive consequence, however, it enables
implementation-specific optimizations where certain validation checks
might be dropped for the benefit of reduced resource demands.

testing ClientHello processing in server implementations.
However, the stateful nature of TLS and its use of cryptog-
raphy present themselves as the major difficulties towards
that. Nevertheless do we believe that harmonizing these
conflicting aspects is possible.

The key idea is to introduce a TLS-specific and stateful
crypto filter in the stimuli generation and response analy-
sis loop. While the GMT representations of outgoing and
incoming messages get passed through the crypto filter,
its state (i.e. cryptograhic algorithm selection, dynamically
generated keys, etc.) is updated accordingly and cryp-
tographic message components are inserted or removed,
respectively. Thereby, the crypto filter essentially becomes
the crypographic TLS endpoint and keeps stateful aspects
and cryptographic details away from the core algorithm. In
order to allow for message manipulations before and af-
ter cryptographic computations, messages might be passed
back and forth between the generation algorithm and the
crypto filter. The efficiency of such a setting remains to be
studied though.

With fully interactive testing comes a break-up of the
current separation between stimuli generation and imple-
mentation stimulation. While removing the advantageous
parallelizability feature of our current approach, it would
allow for response-driven feedback to guide and dynami-
cally optimize the generation algorithm (e.g. similar to the
output δ-diversity guidance of NEZHA). Bringing in ma-
chine learning techniques at this point might be interesting
as well.

8.2 Further Research Directions

In addition to the aforementioned high-priority goal, there
are further directions into which we plan to extend our
work.

It is desirable to add support for further protocol ver-
sions, e.g. TLS 1.3, the upcoming successor of TLS 1.2 [31],
and Datagram TLS (DTLS), the datagram version of TLS
[54]. Moreover do we plan to add support for message
fragmentation and coalescence at the TLS record layer.

Machine learning techniques might allow to simplify
the task of manually correlating response discrepancies
with root causes in the implementations. For instance, we
plan to automatically derive specific characteristics in the
stimulation messages that induce certain discrepancy pat-
terns. In this way, the range of possible root causes might
be narrowed down. Delta-debugging is another interesting
approach in this direction [55].

Furthermore, as indicated previously, the long-term be-
haviour (i.e. for large test corpuses) of our approach should
be studied and contrasted against that of others.

Finally, in the light of the high number of unique re-
sponse discrepancies triggered by our stimulation messages,
we expect our approach to be suitable for fingerprinting
unknown TLS implementations [56]. We plan to study this
potential in more detail.

9 CONCLUSION

In this paper, we presented our work on applying dif-
ferential testing to black-box implementations of the TLS

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

protocol. In contrast to previous work using differential
testing in this context, we do not focus on the certificate
validation logic of TLS implementations but directly address
the TLS handshake protocol itself.

To this end, we presented a novel fuzzing strategy for
efficiently generating mostly-valid TLS protocol messages.
Our algorithm turns out to be highly effective: in our peer
group with OpenSSL , BoringSSL , MatrixSSL , mbedTLS ,
and WolfSSL , it induces more unique response discrepan-
cies than American Fuzzy Lop, TLS-Attacker , and NEZHA
do. Moreover does it achieve the highest code coverage in
MatrixSSL among these alternative methdos.

Compared to standard fuzzing, the differential test ap-
proach can achieve sensitivity to implementation bugs that
do not express themselves in program crashes or invalid
memory access. It allowed us to reveal a number of issues
in popular TLS implementations. Among these is a serious
vulnerability in MatrixSSL 3.8.4 which a man-in-the-middle
can use to inject unauthenticated ClientHello extensions into
the TLS handshake between a MatrixSSL server and an
arbitrary client. In all cases did we disclose our findings
responsibly to the respective developers; fixes are available
in the meanwhile.

While currently we use fuzz-generated ClientHello mes-
sages to stimulate TLS servers, we see our approach as pre-
sented herein only as the first step towards fully interactive
differential testing of black-box TLS protocol implementa-
tions. In this context, dealing with the stateful nature of
TLS and its use of cryptography is an obvious challenge.
However, our ongoing work indicates that this problem is
solvable.

Anyway, our findings let us think that applying differ-
ential testing to the TLS handshake is a promising direction
for identifying bugs in TLS implementations. Our approach
may serve as a valuable complement to existing test tools for
TLS. In particular, it may allow developers of low-footprint,
C-based TLS implementations to benefit from the promise of
correctness related to verified implementations like miTLS
[21] written in high-level languages.

Our software tools are available19 as open source projects
at https://github.com/hso-esk/tls-diff-testing.

ACKNOWLEDGMENTS

We are very grateful for the valuable feedback we received
from the anonymous reviewers of our manuscript as well as
from our colleagues Manuel Schappacher, Artem Yushev,
and Oliver Kehret. We furthermore would like to thank
Prof. Dr. Dirk Timmermann from Rostock University for his
scientific support of our work.

REFERENCES

[1] T. Dierks and E. Rescorla, “The transport layer security (TLS)
protocol version 1.2,” RFC 5246, Aug. 2008.

[2] R. Oppliger, SSL and TLS: Theory and Practice. Artech House
Publishers, 2009.

19. A note to the reviewers of our manuscript: our software tools will
be made publicly available if and as soon as our manuscript is accepted
for publication. You can find the source code of our tools attached to
our submission.

[3] L. C. Paulson, “Inductive Analysis of the Internet Protocol TLS,”
ACM Transactions on Information and System Security, vol. 2, no. 3,
pp. 332–351, Aug. 1999.

[4] G. Dı́az, F. Cuartero, V. Valero, and F. Pelayo, “Automatic Verifica-
tion of the TLS Handshake Protocol,” in Proc. ACM Symposium on
Applied Computing (SAC ’04), 2004, pp. 789–794.

[5] K. Ogata and K. Futatsugi, “Equational Approach to Formal
Analysis of TLS,” in Proc. 25th IEEE International Conference on
Distributed Computing Systems (ICDCS ’05), Jun. 2005, pp. 795–804.

[6] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk,
“Universally Composable Security Analysis of TLS,” in Proc. 2nd
International Conference on Provable Security (ProvSec 2008), Oct.
2008, pp. 313–327.

[7] H. Krawczyk, K. G. Paterson, and H. Wee, “On the Security of
the TLS Protocol: A Systematic Analysis,” in Proc. 33rd Annual
Cryptology Conference (CRYPTO 2013), Aug. 2013.

[8] C. Meyer and J. Schwenk, “Lessons Learned From Previous
SSL/TLS Attacks - A Brief Chronology Of Attacks And Weak-
nesses,” Cryptology ePrint Archive, Report 2013/049, Jan. 2013.

[9] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram TLS
(DTLS),” RFC 7457, Feb. 2015.

[10] ——, “Recommendations for Secure Use of Transport Layer Secu-
rity (TLS) and Datagram Transport Layer Security (DTLS),” RFC
7525, May 2015.

[11] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating
SSL certificates in non-browser software,” in Proc. ACM Conference
on Computer and Communications Security (CCS ’12), Oct. 2012, pp.
38–49.

[12] D. Kaloper-Meršinjak, H. Mehnert, A. Madhavapeddy, and
P. Sewell, “Not-Quite-So-Broken TLS: Lessons in Re-Engineering a
Security Protocol Specification and Implementation,” in Proc. 24th
USENIX Security Symposium (USENIX Security 15), Aug. 2015, pp.
223–238.

[13] “OpenSSL ’Heartbleed’ vulnerability,” CVE-2014-0160, 2013.
[14] “OpenSSL ’CCS injection’ vulnerability,” CVE-2014-0224, 2013.
[15] “OpenSSL: TLS/SSL and crypto library,” www.openssl.org.
[16] “GnuTLS Certificate verification vulnerability,” CVE-2014-0092,

2014.
[17] “GnuTLS: GNU Transport Layer Security Library,” www.gnutls.

org.
[18] S. Bratus, T. Darley, M. Locasto, M. L. Patterson, R. B. Shapiro, and

A. Shubina, “Beyond Planted Bugs in “Trusting Trust”: The Input-
Processing Frontier,” IEEE Security and Privacy, vol. 12, no. 1, pp.
83–87, 2014.

[19] D. A. Wheeler, “How to Prevent the next Heartbleed,” Apr. 2014.
[20] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Y. Strub,

“Implementing TLS with Verified Cryptographic Security,” in 2013
IEEE Symposium on Security and Privacy, May 2013, pp. 445–459.

[21] “miTLS: A Verified Reference Implementation of TLS,” mitls.org.
[22] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using

Frankencerts for Automated Adversarial Testing of Certificate
Validation in SSL/TLS Implementations,” in Proc. 2014 IEEE Sym-
posium on Security and Privacy (SP ’14), May 2014, pp. 114–129.

[23] W. M. McKeeman, “Differential Testing for Software,” Digital
Technical Journal, vol. 10, no. 1, pp. 100–107, 1998.

[24] Y. Chen and Z. Su, “Guided Differential Testing of Certificate Val-
idation in SSL/TLS Implementations,” in Proc. 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2015), Aug. 2015,
pp. 793–804.

[25] T. Petsios, A. Tang, S. J. Stolfo, A. D. Keromytis, and S. Jana,
“NEZHA: Efficient Domain-independent Differential Testing,” in
Proceedings of the 38th IEEE Symposium on Security & Privacy, San
Jose, CA, May 2017.

[26] S. Sivakorn, G. Argyros, K. Pei, A. D. Keromytis, and S. Jana,
“HVLearn: Automated Black-box Analysis of Hostname Verifica-
tion in SSL/TLS Implementations,” 2017.

[27] “American Fuzzy Lop (AFL),” http://lcamtuf.coredump.cx/afl.
[28] J. Somorovsky, “Systematic Fuzzing and Testing of TLS Libraries,”

in Proc. 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’16), Oct. 2016, pp. 1492–1504.

[29] “tls-diff-testing: Differential Handshake Fuzz-Testing
of TLS Implementations,” https://github.com/phantax/
tls-diff-testing.

[30] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246,
Jan. 1999.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[31] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” draft-ietf-tls-tls13-20, Apr. 2017, Work in Progress.

[32] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
Pulsar: Stateful Black-Box Fuzzing of Proprietary Network Protocols,
2015.

[33] G. Shu and D. Lee, “Testing security properties of protocol imple-
mentations - a machine learning based approach,” in Distributed
Computing Systems, 2007. ICDCS ’07. 27th International Conference
on, June 2007, pp. 25–25.

[34] G. Shu, Y. Hsu, and D. Lee, “Detecting communication protocol
security flaws by formal fuzz testing and machine learning,” in
Formal Techniques for Networked and Distributed Systems FORTE
2008, ser. Lecture Notes in Computer Science, K. Suzuki, T. Hi-
gashino, K. Yasumoto, and K. El-Fakih, Eds. Springer Berlin
Heidelberg, 2008, vol. 5048, pp. 299–304.

[35] Y. Hsu, G. Shu, and D. Lee, “A model-based approach to security
flaw detection of network protocol implementations,” in Network
Protocols, 2008. ICNP 2008. IEEE International Conference on, Oct
2008, pp. 114–123.

[36] W. Tang, A.-F. Sui, and W. Schmid, “A model guided security
vulnerability discovery approach for network protocol implemen-
tation,” in 2011 IEEE 13th International Conference on Communication
Technology, Sept 2011, pp. 675–680.

[37] J. de Ruiter and E. Poll, “Protocol State Fuzzing of TLS Imple-
mentations,” in Proc. 24th USENIX Security Symposium (USENIX
Security 15), Aug. 2015, pp. 193–206.

[38] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Y. Strub, and J. K. Zinzindohoue, “A
Messy State of the Union: Taming the Composite State Machines
of TLS,” in Proc. 2015 IEEE Symposium on Security and Privacy, May
2015, pp. 535–552.

[39] H. Kario, “TLSFuzzer: TLS Test Suite and Fuzzer,” www.github.
com/tomato42/tlsfuzzer.

[40] “TLS-Attacker: A Java-based Framework for Analyzing TLS Li-
braries,” https://github.com/RUB-NDS/TLS-Attacker.

[41] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias,
“SFADiff: Automated Evasion Attacks and Fingerprinting Using
Black-box Differential Automata Learning,” in Proceedings of the
23rd ACM Conference on Computer and Communications Security,
Vienna, Austria, Oct 2016.

[42] “libFuzzer: A Library for Coverage-Guided Fuzz Testing,” http:
//llvm.org/docs/LibFuzzer.html.

[43] A. Walz and A. Sikora, “eTPL: An Enhanced Version of the TLS
Presentation Language Suitable for Automated Parser Genera-
tion,” in 9th IEEE International Conference on Intelligent Data Acqui-
sition and Advanced Computing Systems: Technology and Applications
(IDAACS), 2017.

[44] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug Charac-
teristics in Open Source Software,” Empirical Software Engineering,
vol. 19, no. 6, pp. 1665–1705, 2014.

[45] “BoringSSL: A Fork of OpenSSL that is Designed to Meet Google’s
Needs,” boringssl.googlesource.com/boringssl.

[46] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller,
“Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS),” RFC 4492, May 2006.

[47] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “Transport
Layer Security (TLS) Session Resumption without Server-Side
State,” RFC 5077, Jan. 2008.

[48] R. Seggelmann, M. Tuexen, and M. Williams, “Transport Layer
Security (TLS) and Datagram Transport Layer Security (DTLS)
Heartbeat Extension,” RFC 6520, Feb. 2012.

[49] J. Postel, “DoD standard Transmission Control Protocol,” RFC 761,
Jan. 1980.

[50] E. Allman, “The Robustness Principle Reconsidered,” Commun.
ACM, vol. 54, no. 8, pp. 40–45, Aug. 2011.

[51] M. Thomson, “The Harmful Consequences of Postel’s Maxim,”
draft-thomson-postel-was-wrong-00, Mar. 2015, Work in Progress.

[52] K. Bhargavan and G. Leurent, “Transcript Collision Attacks:
Breaking Authentication in TLS, IKE, and SSH,” in Proc. Network
and Distributed System Security Symposium (NDSS 2016), Feb. 2016.

[53] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shu-
bina, “Exploit Programming: From Buffer Overflows to “Weird
Machines” and Theory of Computation,” ;login:, vol. 36, no. 6,
2011.

[54] A. Freier, P. Karlton, and P. Kocher, “The Secure Sockets Layer
(SSL) Protocol Version 3.0,” RFC 6101, Aug. 2011.

[55] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input,” IEEE Transactions on Software Engineering, vol. 28,
no. 2, pp. 183–200, Feb. 2002.

[56] C. Meyer, “20 Years of SSL/TLS Research: An Analysis of the In-
ternets Security Foundation,” Ph.D. dissertation, Univ. of Bochum,
Feb. 2014.

Andreas Walz holds a diploma in physics from
the University of Freiburg. From his studies and
from working as a research assistant in exper-
imental particle physics he has many years of
experience in the development of embedded
hardware systems as well as efficient software.
Currently, he is pursuing his Ph.D. in the field
of security in embedded systems with special
interest in the TLS protocol family.

Axel Sikora holds a diploma of electrical
engineering and a diploma of business ad-
ministration, both from Aachen Technical Univer-
sity. He has done a Ph.D. in electrical engineer-
ing at the Fraunhofer Institute of Microelectronics
Circuits and Systems, Duisburg, with a thesis on
SOI-technologies. After positions in the telecom-
munications and semiconductor industry, he be-
came a professor at the Baden-Wuerttemberg
Cooperative State University Loerrach in 1999.
In 2011, he joined Offenburg University of Ap-

plied Sciences, where he leads the Institute of Reliable Embedded
Systems and Communication Electronics. Since 2016, he is also deputy
member of the board at Hahn-Schickard Association of Applied Re-
search, where he heads the “Software Solutions” division. His major
interest is in the field of efficient, energy-aware, safe, and secure algo-
rithms and protocols for wired and wireless embedded communication.
In 2002, he founded the Steinbeis Transfer Center Embedded Design
and Networking for professional protocol and platform developments,
which was successfully spun off as STACKFORCE GmbH in 2014. Dr.
Sikora is the author, co-author, editor, and co-editor of several textbooks
and numerous papers in the field of embedded design and wireless
and wired networking, and head and member of manifold steering and
program committees of international scientific conferences.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2763947

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

