

The Institute of reliable Embedded Systems and Communication Electronics (ivESK) proposes a

Bachelor Thesis / Internship for the

Implementation and Integration of TSN Translators and 5G UPF into TSN Switches

Time-Sensitive Networking (TSN) and 5G are key enablers for ultra-reliable and low-latency communication in future (industrial) networks. To unlock their full potential, seamless integration between both technologies is essential. Therefore, ivESK currently works on the Integration of 5G and TSN into industrial networks.

This project, focuses on implementing and integrating TSN Translator functions and 5G User Plane Functions (UPF) into Linux-based TSN switches provided by NXP. The NXP Layerscape LS1028 platform provides a Linux -based TSN-capable switch that offers advanced networking features and hardware acceleration for timesensitive communication. The overall objective is to enable a seamless interaction between 5G networks and TSN domains by integrating key functional components directly into the switch. On the network side, this includes the integration of a 5G User Plane Function (UPF) that has direct access to the switch's hardware switching engine, enabling high-performance packet forwarding with deterministic latency. At the same time, TSN features such as traffic scheduling (e.g., Qbv) must be integrated and configured as part of the network-side translator (NW-TT).

On the device side, additional TSN translator functionalities (DS-TT) and high-precision timestamping may be explored to further enhance synchronization and timing accuracy. Together, these developments will contribute to a holistic 5G-TSN integration framework, where devices and networks can interact with guaranteed latency, reliability, and synchronization.

This project includes the following tasks:

- Set up and hands-on with NXP TSN switches.
- Get familiar with the hardware, Linux environment, and switch APIs.
- Integrate the 5G UPF and network-side translator (NW-TT) features.
- Implement device-side translator (DS-TT) functionalities with high-precision timestamping.
- Configure and integrate advanced TSN features such as Qbv (Time-Aware Shaper).

This task delivers and improves skills in programming, networking and software design and requires

- Solid knowledge of Embedded Linux.
- Strong background in networking (ideally including 5G and TSN networks).
- Programming experience (e.g., C/C++, Python, or similar).
- Familiarity with embedded devices and hardware–software integration.

References:

- https://en.wikipedia.org/wiki/Time-Sensitive_Networking
- https://ieeexplore.ieee.org/document/10541017
- https://github.com/NXP/flexbuild
- https://www.nxp.com/design/design-center/software/ embedded-software/linux-software-and-development-tools/nxp-debian-linux-sdk-distribution-for-i-mx-and-layerscape:NXPDEBIAN

Institute of Reliable Embedded Systems and Communication Electronics (ivESK)
Manuel Schappacher

manuel.schappacher@hs-offenburg.de +49 (0)781 / 205 4775