
Selecting the Best Parameters: How to Accelerate Somewhat
Homomorphic Encryption for Cloud Auditing

Louis Tajan Moritz Kaumanns Dirk Westhoff
Hochschule Offenburg University

Offenburg, Germany
{louis.tajan,moritz.kaumanns,dirk.westhoff}@hs-offenburg.de

Abstract—In a Semi-autonomic cloud auditing architecture we weaved
in privacy enhancing mechanisms [14] by applying the public key version
of the Somewhat homomorphic encryption (SHE) scheme from [4].
It turns out that the performance of the SHE can be significantly
improved by carefully deriving relevant crypto parameters from the
concrete cloud auditing use cases for which the scheme serves as privacy
enhancing approach. We provide a generic algorithm for finding good
SHE parameters with respect to a given use case scenario by analyzing
and taking into consideration correctness, performance and security of
the scheme. Also, to show the relevance of our proposed algorithms we
apply it on two predominant cloud auditing use cases.

Index Terms—Somewhat Homomorphic Encryption, Software Acceler-
ation, Cloud Auditing.

I. INTRODUCTION

In the field of computation on encrypted data ideally one would like
to perform both, additively and multiplicatively arithmetic operations
on encrypted data in its most flexible way. This is what FHE [6]
achieves. However, for most application fields FHE comes with a
non-acceptable performance degradation, both with respect to runtime
and with respect to ciphertext versus cleartext data size. For the above
reasons, in the work at hand we are investigating the usage of a SHE
scheme [4] which we want to carefully adjust to concrete privacy
enhancing cloud auditing use cases.

One may argue that the most recently proposed Leveled Fully
Homomorphic Encryption (LFHE) [3] scheme which is based on the
building blocks of SHE [4] scheme may be a more advanced choice.
However, we argue that for performance reasons this is surely not
the case. Additional costs for the LFHE extension of the SHE mainly
arise due to a freshness function which is applied subsequently to
each addition operation and multiplication operation on ciphertext
polynomials with the two objectives to weave in i) a fresh key as well
as ii) a new modulus. Whereas to our understanding the first aims
at what we coined “perfect forward computation” for computation
on encrypted data (e.g. in similarity to “perfect forward secrecy” for
communication protocols), a new modulus per computation level aims
to reach “fully” homomorphic in particular for the limited operation
in SHE, namely the multiplication. This way the LFHE compared
to the FHE is surely performance saving, however compared to the
SHE for the above denoted reasons still more complex. Since we are
aiming for concrete use cases, specifically aiming for a homomorphic
encryption scheme which supports in a cost efficient manner many
addition operations but only few multiplicative operations, still the
original SHE scheme is a promising candidate for our setting.

It is in our pre-dominant interest to accelerate arithmetic operations
on encrypted data, such that they can be performed also on a relatively
large number of data. It turns out that this is a cross-layer effort, since
parameters from i) the use case that shall be supported need to be
mapped to the performed number of arithmetic operations and size
of the required cleartext value space, ii) from the encoding layer

(plaintext polynomials), and finally iii) from the encryption layer
(ciphertext polynomials). Since many of these parameters turn out to
be mutually dependent a proper configuration algorithm is required,
which orchestrates them to apply SHE in a speed-optimized and
secure way for a given setting. We will independently analyze the
parameters regarding the correctness, the performance and the security
aspects of the scheme and we will merge them in order to draw this
proper configuration algorithm. Exactly this is the value of the work at
hand. We examplarily show the benefits of our approach by choosing
two relevant use cases from the arena of privacy-preserving cloud
auditing.

II. BACKGROUND

A. The Ring Learning with Errors Problem

The Ring Learning with Errors (RLWE) problem, presented by
Lyubashevsky et al. in [10], corresponds to the larger Learning
with errors (LWE) problem specialized to polynomial rings over
finite fields. The solution to the RLWE problem may be reducible
to the NP-Hard Shortest Vector Problem (SVP) in Lattice. The
RLWE assumption is characterized by multiple parameters, rings
R := Z[x]/〈f(x)〉 and Rq := R/qR for some degree n integer
polynomial f(x) ∈ Z[x], a prime integer q ∈ Z and an error
distribution χ over R. The ring Rq thus represents the ring of degree
n polynomials modulo f(x) with coefficients in Zq . With these
configuration, addition in this ring is done component-wise in their
coefficients and multiplication is simply polynomial multiplication
modulo f(x) and q. Let s $←− Rq be a uniformly random ring element.
The assumption says that given any polynomial number of samples of
the form (ai, bi = ai ·s+ei) ∈ (Rq)

2, where ai is uniformly random
in Rq and ei is drawn from the error distribution χ, the bi’s are
computationally indistinguishable from uniform in Rq . This specific
case of the RLWE assumption where ring elements are represented
polynomials has been highlighted by Brakerski and Vaikuntanathan
in [4] and referenced as the Polynomial Learning with Errors (PLWE)
problem.

B. The SHE Scheme

As we argued in the Section I, the studied encryption scheme here
is the somewhat homomorphic encryption scheme presented by Brak-
erski and Vaikuntanathan in 2011 [4]. This scheme requires to firstly
encode the message into a polynomial representation subsequently to
encrypt it with the respective encryption function resulting in a couple
of polynomials. Figure 1 illustrates the steps to encrypt a message.

1) Message Space: The plaintext polynomial space corresponds to
Rt = Zt[x]/(xn + 1) with two parameters t and n. The polynomial
degree n limits the amount of coefficients while parameter t bounds
the coefficients size.

Plaintext Plaintext Polynomial
Encryption

Cipher Polynomials
(n, t, b) (q, !)

Encoding

degree of the
polynomial

value space of the
coefficients

base value space of the
coefficient

standard deviation
of the error

Figure 1. Encoding and encryption path for a message.

In [2], Bieberstein considers one additional parameter comparing
to the presentation of this scheme by Brakerski et al. : the base b.
This parameter represents the base of all the polynomials. In other
words, when encoding and decoding the messages, we have x = b.
In a classical manner we consider this parameter equal to 2 (as it
is presented in [8]). For example, if we have a message equal to 89
and parameter t = 2 and n = 8, we encrypt it by using his binary
representation 8910 ≡ 10110012 and m = 0 + 26 + 0 + 24 + 23 +
0 + 0 + 1 = 0x7 + 1x6 + 0x5 + 1x4 + 1x3 + 0x2 + 0x1 + 1x0.
In this classical configuration, we are encoding the message with
coefficient ci ∈ {0, . . . , b− 1}. Bieberstein proposes that b could be
different than 2 or t. In particular he is specifying that b = 10 is the
easiest encoding. However, he did not propose anything regarding t
while in [8], t should be prime and less than q. We are now evaluating
the choice of parameter t over parameter b.

a) Positive Messages only: b, t > 2

• t < b : we cannot represent all the values.
• t = b : fits perfectly, M = {0, . . . , tn − 1} and #elements =
tn.

• t > b : multiple representations for some values, M =
{0, . . . , (t− 1)(1−b

n

1−b)} and #elements = tn.
b) Positive and Negative Messages: b > 2, t > 3 and

−t
2
< c < t

2
with c ∈ Z the coefficients of the polynomial.

For t odd:
• t 6 b : we cannot represent all the values.
• t = b + 1 : fits perfectly, M = {−(t

2
− 1)(1−b

n

1−b), . . . , (t
2
−

1)(1−b
n

1−b)} and #elements = (t− 2)(1−b
n

1−b) + 1.
• t > b + 1 : multiple representations for some values, M =
{−(t

2
− 1)(1−b

n

1−b), . . . , (t
2
− 1)(1−b

n

1−b)} and #elements =
(t− 1)n.

For t even:
• t < b : we cannot represent all the values.
• t = b : fits perfectly, M = {−(b t

2
c − 1)(1−b

n

1−b), . . . , (d t
2
e −

1)(1−b
n

1−b)} and #elements = 2(d t
2
e − 1)(1−b

n

1−b) + 1.
• t > b : multiple representations for some values, M = {−(b t

2
c−

1)(1−b
n

1−b), . . . , (d t
2
e − 1)(1−b

n

1−b)} and #elements = tn.
2) Distribution:

a) Uniform Distribution: When we write d $←− S that means d
chosen from the uniform distribution over some finite set S. In the
latter sections we specify it to the ring Rq .

b) Gaussian Distribution: We let the distribution χ = DZn,σ to
indicate the n-dimensional discrete Gaussian distribution. To sample
a vector x ∈ Zn from this distribution, sample yi ∈ R from the
Gaussian of standard deviation σ and set xi := byie, where b·e
represents rounding to the nearest integer. Using the isomorphism
mentioned above, we treat χ as the error distribution over integer
degree n polynomials defined by the probability density function in
[8]:

∀e ∈ Zn : Pr[e← DZn,σ] =
e−π‖e‖

2/σ2∑
e∈Zn e−π‖e‖

2/σ2 (1)

We let χ′ be a noise distribution like χ, only with larger standard
deviation σ′ as it is presented in [4].

σ′ ≥ 2ω(log n) · σ (2)

3) Key Generation: We are considering here the public-key version
of the scheme such that a key pair is being generated. The secret key
is set as sk = s ∈ Rq where we sample a small ring element s $←− χ.
The public key corresponds to a RLWE instance: pk = (a0, b0 =

a0s+ te0). a0
$←− Rq is uniformly randomized and e0

$←− χ a small
error.

4) Encryption: Given the public-key pk = (a0, b0) and a message
m ∈ Rq , elements v, e′ $←− χ and e′′ $←− χ′ are set and the ciphertext
is defined as ct = (c0, c1) = (b0v + te′′ +m,−(a0v + te′)).

5) Decryption: Given the secret key sk = s and a ciphertext ct =
(c0, c1), we first compute m̃ = c0 + c1s ∈ Rq . Secondly we output
the decrypted message m ≡ m̃ mod t. In case of a ciphertext with
more than two elements, the generic decryption formula is:

m̃ =

d∑
i=0

ci · si (3)

6) Addition: Given two ciphertexts ct = (c0, . . . , cd) and ct′ =
(c′0, . . . , c

′
d), the addition of the two corresponds to the following

ciphertext:

ctadd = ct+ ct′ = (c0 + c′0, . . . , cd + c′d) (4)

Namely, addition is done by coordinate-wise vector addition of the
ciphertext vectors. If the two ciphertexts have a different length, we
should pad the shorter ciphertext with zeroes on the most significant
bits. The output of the addition of two ciphertexts ct = (c0, . . . , cδ)
and ct′ = (c′0, . . . , c

′
γ) contains max(δ + 1, γ + 1) ring elements.

Therefore addition does not increase the number of elements in the
ciphertext vector.

7) Multiplication: Given ct = (c0, c1) and ct′ = (c′0, c
′
1), the

multiplication computes ctmult = (c0c
′
0, c0c

′
1 + c′0c1, c1c

′
1). Homo-

morphic multiplication increases the size of the ciphertext. The output
of the multiplication of the two ciphertexts ct = (c0, c1, . . . , cδ) and
ct′ = (c′0, c

′
1, . . . , c

′
γ) contains δ + γ + 1 ring elements and will be

represented as: (
δ∑
i=0

civ
i

)
·

(
γ∑
i=0

c′iv
i

)
=

δ+γ∑
i=0

c̃iv
i (5)

III. DISCUSSION OF THE SHE PARAMETERS

The parameters should be chosen according to guarantee i) the
correctness, ii) an acceptable performance and iii) an appropriate
security level.

A. Correctness Considerations

To guarantee correctness of the resulting value after having com-
puted a certain amount of additions and multiplications on the cipher-
texts, we have to ensure three aspects of the ciphertext evolution. The
growing of the information’s degree, the growing of the information’s
coefficient and finally the growing of the error. Indeed, even if the
ciphertext is not growing by itself because of the q and xn+1 moduli
reductions, these aspects are growing inside of it. In Figure 2 we can
see the two ways the information is spreading. The choice of the
parameters (n, t and q) will determine the maximal value that could
take the degree and the coefficients. By performing computations
on the ciphertexts, the plaintext information weaved into them will

cn’-1

q

q’
c1

q

q’
c0

q

q’
…cn-1

q

q’

Figure 2. The two dimensional growing of the information in the ciphertext
polynomials

be able to grow up to these limitations. We have seen previously
that addition and multiplication could be performed directly on
ciphertexts. In addition to consider the amount of executions of these
two types of operations, we should also be aware of the order of
execution of the operations. Indeed, this will impact the plaintext’s
maximal possible value and thus the correctness of the final result.
Let’s define ‖ct‖∞:= max(| c0 |, | c1 |, . . . , | cδ |) the infinite norm
of a ciphertext which correspond to the maximal size of its coefficients
in the plaintext dimension. For example, we first encode a plaintext
value m ∈ ZN into a message polynomial p and we choose an
encoding method where the coefficient values are minimized. Then we
get p = (c0, c1, . . . , cn−1) with ∀i ∈ {0, . . . , n−1}, 0 6 ci < b, so
‖p‖∞= b−1. This polynomial is then encrypted by the current SHE
scheme into a polynomial ct = {ct0, ct1} and we get ‖ct‖∞= q−1.
Let us now suppose that we are performing an encrypted addition be-
tween the ciphertexts ct and ct′ similarly produced (‖ct′‖∞= q−1).
Since the encrypted addition is an arithmetic addition performed
coefficient wise as presented in Section II-B6, the resulting ciphertext
ctadd will have the same norm due to the modulo, ‖ctadd‖∞= q−1.
However, in the plaintext space, the resulting polynomial will have
its norm doubled ‖padd‖∞= 2b + 2. We could then generalize to:
‖Add(p, p′)‖∞= ‖p‖∞+‖p′‖∞. To be able to optimize the choice of
parameter t (i.e. choosing it as small as possible while still ensuring
security and correctness), the best solution would be to predict
the maximal retrieved coefficient after performing the computations
circuit on the plaintexts. Parameter t will have to be greater than the
infinite norm of the resulting corresponding polynomial.
We also have to consider limitations from the initial work [4] in the
Key Dependent Messages (KDM) scenario:

• t > σ
√
n (i.e. a sample from χ resides in Rt with all but

negligible probability).
• t < 2−ω(logn) · σ−d · q with ct = (c0, . . . , cd).

Let us now consider the encrypted multiplication. We define the
degree function deg(p) := i such that i is the degree of polynomial p.
If we perform an addition between two ciphertexts, since the addition
is computed on the respective coefficients, the information will not
spread to higher coefficients. On the contrary, when we perform a
multiplication of some ciphertexts, the information will affect higher
degree coefficients. When we multiply two polynomials, p and p′ we
can denote deg(pmult) = deg(p) + deg(p′) if deg(p), deg(p′) > 1.
In the ciphertext space, the degree of the encrypted polynomial
will not increase because of the xn + 1 modulo and at any time
deg(ct) 6 n − 1. The use of multiplication on the ciphertext will
result in a limitation of parameter n. Indeed, if after too many
multiplications, deg(pmult) > n− 1 then the modulo wrapping will
remove information and the final decryption will not be correct. For
that reason, with the degree of the ”fresh” encoded polynomials and
the computations circuit, we will have to predict the degree of the
resulting polynomial such that parameter n remains less than this
degree.

B. Performance Considerations

In [8], Lauter et al. state for a reduction of the parameter’s
size to improve performance. In the following section we aim to
analyze how these parameters are manageable and concretely what
are their limitations. We should determine which form could be the
best with respect to the objective to reduce the computation cost of
the cryptographic functions. We face two opposite strategies: firstly,
having a high polynomial degree with small coefficients and secondly
having a low maximal degree with significant coefficients.
We recall that parameter b is the base that is used to encode the
message into a polynomial. If we choose a small base, by definition,
we could get a small message space reduction t but that will imply a
use of a large polynomial degree n. Vice versa, a choice of a larger
base b will increase the lower bound of t since the ”fresh” coefficients
will be larger and will grow faster with computations. A choice of
a larger encoding base could also reduce the lower bound of n and
thus help reducing the homomorphic operation complexities.

The choice of the base b and how we decide to encode the message
polynomial have to be consider. Regarding b we could consider two
opposite strategies of encoding the messages into polynomials. First
we could encode any message with coefficients ci ∈ {0, . . . , b− 1}.
With this strategy we will get a maximal degree for the encoding
polynomial. The second strategy will be to have on the contrary a
minimal degree for the message polynomial. We then could get the
first coefficient such that c0 = m (for m the complete plaintext
message) and ci = 0 for all 0 < i < n. By this usage we get
an encoding polynomial of degree 0 and therefore parameter n will
not have to be that large.

To be able to represent a specific message space, we have to adjust
the three parameters namely n, t and q, the polynomial degree, the
value spaces of the coefficients of the cleartext and ciphertext. As
message spaces, we should not consider only the initial message space
but also the final message space. This corresponds to the possible
values of the messages after being computed in the ciphertext space.
In [8], the authors consider that a wise strategy regarding performance
would be to reduce parameters t, q or n. They suggest to encode
the messages as a list of bits. In other terms, as a polynomial with
coefficients equal to {0, 1}. Such a strategy will directly require the
largest parameter n for a given value space. Indeed, the minimal
value of n should be equal to the logarithm of the maximal encoded
message. Also, this technique implies a use of the base (parameter
b) equal to 2, otherwise not all the values could have been encoded
(see Section II-B1). As we will show later, this seems to be not the
most optimal strategy to set the parameters.

We are now investigating how reducing the size of the polynomials
will impact the performance of the encryption and computations of
the ciphertexts. In a first step we will see how a variation of parameter
n impacts the performance. Subsequently we do this for parameter q.
We are expressing the cryptographic functions in terms of elementary
operations to see how they are connected to parameter n. We consider
here fresh ciphertexts, (i.e. ciphertext with two polynomials) and
polynomials multiplication performed with the FFT algorithm:
1 Encdata → 3 Samplepoly + 3 Addpoly + 2 Multpoly +

3 scMultpoly → 3n Samplecoef + (2n logn + 7n − 8) Addcoef +

(2n logn+ 7n− 8) Multcoef + (4n logn+ 13n− 20) Modcoef
1 Adddata → 2 Addpoly → 2n Addcoef + 2n Modcoef
1 Multdata → 4 Multpoly + 4 Redpoly + 1 Addpoly → (4n logn +

9n−16) Addcoef+(4n logn+8n−16) Multcoef+(21n−40) Modcoef
1 Decdata → 3 Multpoly + 1 Addpoly → (3n logn + 7n −
12) Addcoef + (3n logn + 6n − 12) Multcoef + (6n logn + 16n −

30) Modcoef
The results show that the complexity of the four cryptographic
functions is linearithmic in term of n.
We now analyze the complexity at a deeper level. We consider the
coefficients encoded with the two’s complement encoding technique.
We use the notation qBits which represents the size of the parameter
q in bits, in other terms, log q.
1 Encdata → 3n Samplecoef + [(2n logn + 7n − 8)(10 qBits2 −
14 qBits+8)+(4n logn+13n−20)(5 qBits−2)] Addbit+[(2n logn+

7n−8)(3 qBits2−2qBits+1)+(4n logn+13n−20) qBits] Multbit
1 Adddata → 4n(5 qBits− 2) Addbit + 4n qBits Multbit
1 Multdata → [(4n logn + 9n − 16)(10 qBits2 − 14 qBits + 8) +

(21n − 40)(5 qBits − 2)] Addbit + [(4n logn + 9n − 16)(3 qBits2 −
2qBits+ 1) + (21n− 40) qBits] Multbit
1 Multdata → [(3n logn + 7n − 12)(10 qBits2 − 14 qBits + 8) +

(6n logn + 16n − 30)(5 qBits − 2)] Addbit + [(3n logn + 7n −
12)(3 qBits2 − 2qBits+ 1) + (6n logn+ 16n− 30) qBits] Multbit
We see here that the complexity is quadratic in term of the size qBits.
Or in term of parameter q, it is polylogarithmic. We could then affirm
that a reduction of n is the predominant parameter saving performance
even if that should imply a growing of q. This should be the guiding
principle that leads our aimed algorithm.

C. Security Considerations

We are now taking security aspects into account by integrating
security measurement against a specific attack. As in [8], we consider
the distinguising attack presented in [9]. In this work, the authors
analyze the security of a lattice-based encryption scheme based on
the LWE problem. This scheme is an instance of an abstract system
described by Micciancio [11] that generalizes all the schemes of [13],
[12], [7]. This cryptosystem could be assimilated to the one we are
currently using, since it is based on the same mathematical problem
and both of them are characterized by the same parameters.

In this section we will consider this attack and express the
robustness of the scheme according to the selected parameters. As
it is also done in [8], we express the security of the scheme through
the logarithm of the running time (in seconds) of the attack itself
with each specific parameters configuration. This amount of security
depends on three parameters n, log(q) and l. Parameter l corresponds
to the size of the messages that have to be encrypted and expressed
in bits.

log(T) =
1.8 (2n+ l)2

n log(q)
− 110 (6)

As it is presented in the Appendix of [5], the security of this
cryptosystem could also be reduced to the hardness of the RLWE
assumption (defined in II-A). The parameter σ, the standard deviation
of the used Gaussian distribution, relies on the security of such
problem. This parameter should be chosen such that it could avoid
combinatorial style attack. An attack of this kind is presented in [1]
which breaks LWE in time 2O(‖e‖2∞) with high probability, where e
is the LWE error vector. Since e is chosen by the discrete Gaussian
distribution with standard deviation σ, if we pick σ large enough
then this attack should be prevented. Thus, according to [5] choosing
σ > 8 will ensure that it is large enough to avoid combinatorial
attacks. Also we define the second standard deviation σ′ = 2log(n) ·σ
to get slightly stronger overall security by making the public key
better-protect than any ciphertext.

IV. STRATEGY TO REDUCE COMPUTATION COSTS

We are now getting to the main idea of this work which is to
integrate the three previously presented considerations correctness,

performance and security in order to obtain algorithms that generate
the perfect parameters to a suitable usage. These algorithms allow
a user, respectively in our case a database administrator to select
appropriate and performance saving parameters for their own use case.
The algorithm’s arguments T , Mi and λ correspond respectively to
the arithmetic tree of computations, the set of the value spaces of
the computed data and the security parameter. In other words, Mi

corresponds to the value spaces of the T ’s leaves. The overall protocol
is presented in Algorithm 1 and we describe here each of its steps in
details:

Set n: As we have seen in Section III-B Performance Consid-
erations, we should choose parameter n a power of 2 as little
as possible. Thus we start with n = 2.
Set b: To initialize the encoding base, we consider parameters
n and Mi and we apply the formula b > d n

√
Max(Mi)e.

Compute presult: In the objective to select parameter t, we
firstly have to compute a prediction of the resulting polynomial
after decryption phase (see Algorithm 2). In that way, we will
select parameter t such that the t-reduction during the decryption
will not remove any information as we have seen in Section
III-A Correctness Considerations. For this step the concrete
UC’s arithmetic tree T is necessary to consider the order of the
homomorphic operations and to which data they are processing.
Then we verify that deg(presult) > n if not, parameter b should
be set greater in order to reduce presult’s degree.
Set t: We choose t prime such that t > ‖presult‖∞. In other
words, t should be greater than the maximal possible value of a
coefficient from the resulting polynomial.
Set σ and σ′: As we have seen in Sections II-B2b and III-C, to
avoid combinatorial style attacks we set the standard deviations
σ = 8 and σ′ = 2logn · σ.
Set q: We set the modulo q regarding others parameters. q
should be a sub-exponential prime such that q ≡ 1 (mod 2n).
To be able to decrypt correctly, q should also fulfill q >
2 · ‖presult‖∞·(tσn1,5)D+1 with Algorithm 3 that enables to
compute D.
Compute log(T): We compute the security level of the gener-
ated parameters and verify if it fulfills the security parameter λ.
If not, we start over Algorithm 1 with a greater parameter n.

Algorithm 1 Generating SHE Parameters.
Input: Mi, T , λ
Output: n, b, t, q, σ, σ′

1: Set n← 2
2: Set b← d n

√
Max(Mi)e

3: if b < 2 then
4: b← 2
5: end if
6: Compute presult ← F (n, b, T.root)
7: if deg(presult) > n then
8: go back to step 2 with a greater b
9: end if

10: Set t prime s.t. t > ‖presult‖∞
11: Set σ ← 8
12: Set σ′ ← 2log n · σ
13: Compute D ← CD(C)
14: Set q prime s.t. q ≡ 1 (mod 2n) and q > 2 · ‖presult‖∞·(tσn1,5)D+1

15: Compute log(T)← (1.80 (2n+ dlog(Max(Mi)e))2)/(n · log(q))− 110
16: if log(T) < λ then
17: n← n2 and go back to step 2
18: end if
19: return σ, σ′, b, n, t and q

Algorithm 2 Function F
Input: n, b, C
Output: presult

1: function POSTORDER(n, b, no) . a node noi and its two respective children S1i
and S2i

2: if no = null then
3: return
4: end if
5: POSTORDER(n, b, no.left son)
6: POSTORDER(n, b, no.right son)
7: if no.left son = null AND S2i = null then
8: deg(no)← blogb(no.M)c
9: if no.M < b then

10: ‖no‖∞← no.M
11: else
12: ‖no‖∞← b− 1
13: end if
14: else
15: if no.type = (+) then
16: deg(no)← max(deg(no.left son), deg(no.right son))
17: ‖no‖∞← ‖no.left son‖∞+‖no.right son‖∞
18: else if no.type = (∗) then
19: deg(no)← deg(no.left son) + deg(no.right son)
20: ‖no‖∞← 2 · [min(deg(no.left son), deg(no.right son)) +

1] · ‖no.left son‖∞·‖no.right son‖∞
21: end if
22: end if
23: presult ← no
24: end function
25: return presult

Algorithm 3 Function CD
Input: C
Output: int D
1: function POSTORDER(no) . a node noi and its two respective children S1i and
S2i

2: D ← 0
3: if no.type = (+) then
4: D ← max(POSTORDER(no.left son), POSTORDER(no.right son))
5: else if no.type = (∗) then
6: D ← 1 + POSTORDER(no.left son) +
POSTORDER(no.right son)

7: else
8: return 0
9: end if

10: return D
11: end function

V. USE CASES

To illustrate the choice of the correct parameters we implement our
algorithms and then, we select use cases and perform their execution
by using an implementation of the SHE scheme. We run our solution
for these specific use cases and verify that the generated parameters
are indeed the best to use in a term of performance. We choose two
specific use cases which are taken from cloud security auditing to
illustrate our purpose. Nevertheless, the reader should understand that
our algorithms could be applied to any scenario they may use as long
as the SHE scheme is needed. The user will have to provide his
arithmetic tree as well as the message spaces of the different values
used during the scenario and precise the required level of security.

A. SHE Implementation.

We are using the initial work of A. Bieberstein. For his Master
Thesis [2], he implemented the SHE scheme in C++ with the
use of the two arithmetic libraries Flint and GMP. His work was
purely based on the symmetric version and we modified it such that
we could use it as a public-key scheme. The need of the scheme
with private/public keys was motivated by the use cases that could
require the cloud infrastructure PAL SAaaS project. We are also
planning to publish this implementation online in the near future.

The measurements presented in Table I and Table II have been made
with a CPU configuration of Intel Core i5 M520 2.40GHz x 4.

B. UC1 - Access Control Auditing:

The first considered use case is taken from one of our work on
cloud security auditing [14]. The cloud auditor is checking on behalf
of a client that the CSP’s access control has been performed correctly.
Some computations will be performed directly on the evidences on
the Evidence Store (ES) in the objective to retrieve some amounts of
specific data. The considered evidences are partially encrypted with
the SHE scheme. Each connection attempt could get the characteristic
of being made from an authorized user or not and being successful
or not by having an encryption of 1 to the respective field and an
encryption of 0 otherwise. To compute a set, we add all of the
encryption regarding one field in the ES database and we get the
total amount of connection attempts with this characteristic. To get
an intersection of sets we firstly multiply two characteristics for
each connection attempt and do subsequently add all the products.
We then get the total amount of connection attempts with the two
characteristics. In Figure 3 we show a preview of the database stored
in the ES simplified to two characteristics, along with the operation
circuit of the computations that will have to be performed on the data.

Authorized Connected
0 0
0 1
1 0
1 1
… …
… …
0 0
0 1
1 0
1 1

104 lines

Resulting value: 2500

+

*

C10000A10000

...

+

*

C3A3

+

*

C2A2

*

C1A1

Figure 3. UC1 - Access Control Auditing database and arithmetic tree

We run our algorithms for UC1 and obtain the following set of
parameters {t = 20011, b = 2, n = 4096, log(q) = 84} for a
standard level of security of 128 bits (λ = 128).

Independently of our resulting set of parameters, we will run
our use case with several other sets of parameters to illustrate the
accurateness of our algorithms in term of performance.

We suppose an evidence store with 104 data (connection attempts).
The use case’s algorithm will perform 104 times a multiplication
between two polynomials which represent a simple encryption of 0
or 1.

Table I shows the different running times when we run the use
case with the parameters obtained with our algorithms for n equals
each power of two. The Database column corresponds to the phase
during which the ES database is generated by the CSP and in this
specific use case, that corresponds to 2.104 encryptions. The Audit
field corresponds to the execution of the computations circuit by the
evidence store. We reasonably get results showing that increasing the
polynomial degree makes the running times relatively bigger. Also,
the increase of parameter n is pushing us to choose a parameter q
slightly bigger. We could also notice that the base b remains equal to
2 since the message space is {0, 1}.

Table I
UC1 RUNTIMES (IN MS) AND LEVEL OF SECURITY FOR DIFFERENT SHE

PARAMETERS SETTINGS

t b n qBits Encryption Addition Multiplication Decryption Database Audit log(T)
20011 2 2 51 0.019 0.003 0.388 0.013 235 117 -109,5588
20011 2 4 54 0.019 0.003 0.425 0.013 324 182 -109,3250
20011 2 8 57 0.031 0.004 0.774 0.019 530 326 -108,8592
20011 2 16 60 0.052 0.006 1.363 0.031 933 596 -107,9581
20011 2 32 63 0.096 0.009 2.723 0.058 1765 1185 -106,2277
20011 2 64 66 0.188 0.016 5.925 0.123 3594 2535 -102,9087
20011 2 128 69 0.510 0.031 13.462 0.319 9530 5647 -96,5389
20011 2 256 72 0.999 0.059 30.96 0.677 19550 12920 -84,2999
20011 2 512 75 2.049 0.114 68.204 1.409 46605 132537 -60,7520
20011 2 1024 78 2.049 0.114 68.204 1.409 46605 132537 -15,3846
20011 2 2048 81 2.049 0.114 68.204 1.409 46605 132537 72,1333
20011 2 4096 84 2.049 0.114 68.204 1.409 46605 132537 241,1714
20011 2 8192 87 2.049 0.114 68.204 1.409 46605 132537 568,0414

C. UC2 - Billing Service:

This use case represents a billing process for cloud service’s usage
executed by an auditor on encrypted data from a database. It is
a similar use case to UC1 but in addition to the two fields from
UC1 (Authorized and Connected) we require two extra columns
in the database namely Time and Price. For each client the cloud
auditor multiplies the service usage with the cost and with the two
fields Authorized and Connected which represent markers. Finally,
the auditor sums up all values together and sends the final sum to the
client. This use case represents a charging for cloud service’s usage.
One difference compared to UC1 is the size of the data which are
multiplied and added. These values belong no longer to the set {0, 1}
but represent also some time duration, costs or amounts of data.
Therefore, the message space of the message polynomials will be
much larger The arithmetic tree of computations is similar to the one
from UC1. For each line we do a multiplication between time and
cost and another one between the two marker fields. Subsequently
we multiply the two resulting products. Finally the summation of all
of these 104 products is performed. Important to note: since we are
multiplying products, we get a multiplication depth of 3.
As in UC1, we show in Figure 4 a preview of the database stored in
the ES, along with the operation circuit of the computations that will
have to be performed on the data.

Time Price Authorized Connected
1 8 0 0

10800 5 0 1
36000 1 1 0
86400 3 1 1

… … … …
… … … …
1 8 0 0

10800 5 0 1
36000 1 1 0
86400 3 1 1

104 lines

Resulting value: 648000000
+

*

*

V 210000V 110000

*

p10000t10000

...

+

*

*

V 22V 12

*

p2t2

*

*

V 21V 11

*

p1t1

Figure 4. UC2 - Charging Service database and arithmetic tree

Table II
UC2 RUNTIMES (IN MS) FOR DIFFERENT SHE PARAMETERS SETTINGS

t b n qBits Encryption Addition Multiplication Decryption Database Audit log(T)
187520027 294 2 152 0.021 0.004 0.491 0.012 663 776 -82,6211
10880029 18 4 137 0.031 0.006 0.837 0.016 1058 1399 -92,9723
4000037 6 8 136 0.055 0.01 1.524 0.027 1921 2777 -99,4118
640007 3 16 129 0.096 0.017 2.91 0.046 3536 5330 -101,9628
320009 2 32 129 0.18 0.03 5.97 0.09 6805 10468 -102,9107
320009 2 64 136 0.18 0.03 5.97 0.09 6805 10468 -102,3765
320009 2 128 142 0.18 0.03 5.97 0.09 6805 10468 -99,8592
320009 2 254 148 0.18 0.03 5.97 0.09 6805 10468 -94,2378
320009 2 512 154 0.18 0.03 5.97 0.09 6805 10468 -82,9766
320009 2 1024 160 0.18 0.03 5.97 0.09 6805 10468 -60,9950
320009 2 2048 166 0.18 0.03 5.97 0.09 6805 10468 -18,3735
320009 2 4096 172 0.18 0.03 5.97 0.09 6805 10468 64,1500
320009 2 8192 178 0.18 0.03 5.97 0.09 6805 10468 223,9556
320009 2 16384 184 0.18 0.03 5.97 0.09 6805 10468 533,6198

We run our algorithms for UC2 and obtain the following set of
parameters {t = 32009, b = 2, n = 8192, log(q) = 178} for a
standard level of security of 128 bits (λ = 128).

In Table II we show, as for UC1, the different running times.
We notice that we could get very small parameter n thanks to an
increasing of the base, but to fulfill an acceptable level of security
againdt the distinguishing attack we must consider large polynomial
degree as n = 8192 for a security of 223 bits.

VI. CONCLUSION AND OPEN ISSUES

After analyzing the SHE scheme from Brakerski and Vaikutanathan
[4] and performing some tests on its implementation with respect
to promising cloud auditing use cases, we established a way of
generating the scheme’s parameters in the objective to reduce as much
as possible the computation cost of the scheme’s functions as the
encryption or the multiplication of ciphertexts. Our solution relies on
the observation that reducing first and foremost the polynomial degree
provides us the most significant improvements regarding performance.
To this end and despite what the authors claim in [8], the encoding
base should be as high as possible. With a relatively high encoding
base, the degree of the fresh encoded polynomials will be low and
then the parameter n could be reduced. We present a complete
algorithm that could generate all the scheme’s parameters considering
the value spaces of the different encrypted data and the circuit of
the computations that will have to be performed directly on the
ciphertexts.

REFERENCES

[1] Arora, S., Ge, R.: New algorithms for learning in presence of errors.
In: Proceedings of the 38th International Colloquim Conference on
Automata, Languages and Programming - Volume Part I. ICALP’11,
Springer-Verlag, Berlin, Heidelberg (2011)

[2] Bieberstein, A.: An implementation of SomeWhat Homomorphic En-
cryption scheme from the Ring Learning with Errors. Master’s thesis,
Hochschule Furtwangen University, Furtwangen, Germany (2014)

[3] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homo-
morphic encryption without bootstrapping. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ITCS ’12,
ACM, New York, NY, USA (2012)

[4] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In: Rogaway, P. (ed.)
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA. Proceedings. Lecture Notes in
Computer Science, vol. 6841. Springer (2011)

[5] Damgard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. Cryptology ePrint Archive,
Report 2011/535 (2011)

[6] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis,
Stanford University (2009), crypto.stanford.edu/craig

[7] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the fortieth
annual ACM symposium on Theory of computing. pp. 197–206. ACM
(2008)

[8] Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryp-
tion be practical? Cryptology ePrint Archive, Report 2011/405 (2011)

[9] Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based
encryption. In: Kiayias, A. (ed.) Topics in Cryptology - CT-RSA 2011 -
The Cryptographers’ Track at the RSA Conference 2011, San Francisco,
CA, USA, February 14-18, 2011. Lecture Notes in Computer Science,
Springer (2011)

[10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Lecture Notes
in Computer Science, vol. 6110, pp. 1–23. Springer (2010)

[11] Micciancio, D.: Duality in lattice cryptography. In: Public key cryptog-
raphy. p. 2 (2010)

[12] Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient
and Composable Oblivious Transfer, pp. 554–571. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008)

[13] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34:1–34:40 (Sep 2009), http://doi.acm.org/
10.1145/1568318.1568324

[14] Tajan, L., Westhoff, D., Reuter, C.A., Armknecht, F.: Private information
retrieval and searchable encryption for privacy-preserving multi-client
cloud auditing. In: 11th International Conference for Internet Technology
and Secured Transactions, ICITST 2016, Barcelona, Spain, December 5-
7, 2016. pp. 162–169. IEEE (2016)

