
A Mechanism for Seamless Cryptographic Rekeying
in Real-Time Communication Systems

Heiko Bühler, Andreas Walz, Axel Sikora
Institute of Reliable Embedded Systems and Communication Electronics (ivESK)

Offenburg University of Applied Sciences
Badstrasse 24, 77652 Offenburg, Germany

{heiko.buehler, andreas.walz, axel.sikora}@hs-offenburg.de

Abstract—Cryptographic protection of messages requires fre-
quent updates of the symmetric cipher key used for encryption
and decryption, respectively. Protocols of legacy IT security,
like TLS, SSH, or MACsec implement rekeying under the
assumption that, first, application data exchange is allowed to
stall occasionally and, second, dedicated control messages to
orchestrate the process can be exchanged. In real-time automation
applications, the first is generally prohibitive, while the second may
induce problematic traffic patterns on the network. We present a
novel seamless rekeying approach, which can be embedded into
cyclic application data exchanges. Although, being agnostic to
the underlying real-time communication system, we developed a
demonstrator emulating the widespread industrial Ethernet system
PROFINET IO and successfully use this rekeying mechanism.

Index Terms—industrial communication, security, rekeying,
industrial Ethernet, PROFINET IO

I. INTRODUCTION

Modern operational technology (OT) imposes demanding
requirements regarding the reliability and real-time capabilities
of the communication link. As in legacy information technology
(IT) systems, Ethernet is often used as the underlying transport
medium [1]. Several protocols (e.g., EtherCAT, PROFINET IO
RTC/IRT, and POWERLINK) have been developed to meet the
real-time and reliability needs of industrial networks [2]. Cryp-
tographic protection enables security regarding the integrity
and confidentiality of messages. Although, it requires frequent
updates of the symmetric cipher key used for encryption and
decryption, respectively. Such an update of a cipher key is
called rekeying.

Protocols of legacy IT security, like TLS, SSH, or MACsec
implement rekeying under the assumption that, first, application
data exchange is allowed to stall occasionally and, second,
dedicated control messages to orchestrate the process can be
exchanged. In real-time automation applications, the first is
generally prohibitive, while the second may induce problematic
traffic patterns on the network. As shown in [3], existing IT
security solutions require dedicated adaptations to meet the OT
specific needs.

One specific difference between IT and OT is the expected
lifetime of a connection between two entities. For example,
in legacy IT an HTTPS connection is closed after a typical
request to the web server. In contrast, the connection between
a programmable logic controller (PLC) and an actuator (e.g.,

motor driver) may be kept alive for several months or even
years without interruption.

To protect the communication between two parties, symmet-
ric cipher schemes are widely used for performance reasons.
Those schemes require a shared secret key, known to both
parties to perform encryption and decryption operations.

In [4] Luykx and Paterson establish bounds on the success
probability of an attacker as a function of the amount of data
processed under a single key using the AES-GCM authenticated
encryption scheme. These bounds depend on the number of
plaintext bytes encrypted and the number of forgery attempts
by an adversary. Another reasons are nonce depletion [5],
or because of elapsed time since key activation allowing an
adversary to brute-force the key in use [6]. Considering those
boundaries in our industrial Ethernet scenario, we conclude
that rekeying is approximately required every six hours.

In the following we propose an approach for rekeying, with
continuous data flow between two participants and enable two
different types of rekeying procedures, one of which allows a
message-less, 0-RTT (zero round trip time), rekeying without
additional message exchanges. An important prerequisite to
achieve 0-RTT rekeying is the independence between the key
generation and the key activation. The former is less time
critical, whereas the latter requires very low latency to not
interrupt the flow of data, and to enable a seamless rekeying.
This separation allows to implement these two functionalities
into different units. Although this separation is not mandatory
we consider the key activation to be implemented in hardware,
while the implementation of the key generation can be kept
flexible (i.e., either in software or hardware).

Especially in a typical OT setting, a single PLC may
communicate with many other components (e.g., 128 devices),
via many communication relations, each of which is protected
with its own key. The 0-RTT rekeying is a viable approach to
reduce the computational and network load to a minimum and
additionally schedule the workload, i.e., preventing all commu-
nication relations to rekey at once, in those OT scenarios. This
approach takes advantage of the existing cyclic communication
between peers, by embedding required metadata into those
cylic messages enabling seamless rekeying without additional
management messages.

The remainder of the paper starts with a presentation of
related work (Section II). It is followed by the description

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI of original article: https://doi.org/10.1109/WFCS46889.2021.9483613.

https://doi.org/10.1109/WFCS46889.2021.9483613


of the underlying communication model we build our work
upon (Section III). Based on that, we present a generic
approach to enable seamless rekeying (Section IV) with
some protocol extensions (Section V), and showcase its real-
world OT applicability within the domain of PROFINET IO
(Section VI) with a prototypical implementation on an FPGA-
based hardware platform (Section VII). Finally, a conclusion
is drawn and outlook on future work is made (Section VIII).

II. RELATED WORK

Within the IT domain, several protocols for cryptographically
securing communications do already exist. However, the
rekeying mechanisms they implement use either explicit and
additional messages to initiate rekeying and potentially lead
to an interruption of the message flow. For example, the well-
known DTLS 1.2 [7] uses a session key to protect data in
transit. Occasionally it is required to update this key. To do
so an entire DTLS handshake procedure is required, thus the
communication is interrupted and no real-time requirements
can be guaranteed anymore. The current draft of DTLS 1.3 [8]
allows rekeying without the necessity of a handshake. However,
an additional message is sent to indicate the switch to a new
key, which is currently the best existing protocols can offer.
Other protocols like MACsec [9], SSH [10] and IPsec/IKEv2
[11] do already require additional messages transferred between
two peers to even initiate rekeying.

In [12] Runde et al. present an approach to negotiate a
key between two peers in an industrial automation system by
introducing protocol extensions for the IKEv2 [11] protocol.
This rekeying always involves additional messages between
two peers, for creating a child SA and agreeing on a new key.

In US patent US5940508A [13] the inventors perform
seamless rekeying by using counters, which keep track of the
amount of bits processed using the current key. At a configured
threshold the switch to the other key is performed. The inventors
assume the amount of bits sent is always the same amount
of bits received at the other peer. Given this assumption, the
switch indeed happens synchronized without interruptions. In
case of message loss a re-synchronization of the counter values
needs to be performed. In contrast to our work, there is no
possibility to signalize different kinds of rekeying.

To the best of our knowledge there is no existing protocol,
which allows to embed the signalization of an imminent
rekeying into cyclic messages, while also managing different
types of rekeying.

III. COMMUNICATION MODEL

In this section we introduce a communication model for the
intended use cases. First, we present a basic model representing
OT communication systems. Then we specify the requirements
to support cryptographic operations.

A. Basic OT Communication Model

We assume two equivalent peers communicating with each
other over an unreliable channel, which may induce loss,
reordering, duplication and delaying of messages. Additionally,

Peer 1 Peer 2

Consumer
Unit

Provider
Unit

Provider
Unit

Consumer
Unit

Unreliable
Channel

Figure 1. This basic communication model describes two peers exchanging
data asynchronously with a lower and an upper bound for the time between
two consecutively sent messages.

we assume this channel is under an active attackers control,
that is, messages may be dropped, manipulated or forged by a
malicious attacker. Any communication occurs asynchronously
as unicast messages from one peer to the other. Both peers
include a provider unit as a data source, and a consumer unit
as a data sink as shown in Fig. 1. The provider unit of Peer 1
communicates to the consumer unit of Peer 2 and vice versa.
The time 𝑡𝑠 between two consecutively generated messages
is bounded to a range between 𝑡𝑠,𝑚𝑖𝑛 and 𝑡𝑠,𝑚𝑎𝑥, that is,
messages are not necessarily cyclic but may also be acyclic, as
long as the time between two consecutive messages is within
this range. These time bounds can be specific for each provider
unit. In a real-world scenario one peer might be a PLC and
the other peer a field device.

B. Cryptographic Requirements

Both peers exchange messages, which shall be protected.
In contrast to legacy IT communication the confidentiality
of the transferred data is not as much as important as its
authenticity. Authenticated encryption with associated data
(AEAD) [5] provides both data confidentiality and authenticity.
In the following we use the terms encryption and decryption
as synonyms for authenticated encryption and authenticated
decryption respectively. This, in particular, includes the use of
authenticity-only protection without any confidentiality. AEAD
distinguishes plaintext (PT) and associated data (AD). While
on PT both confidentiality and authenticity are provided, on
AD only authenticity without confidentiality is achieved. This
allows AD to be transmitted in cleartext, while still being
protected (e.g., header fields, which cannot be transferred
encrypted).

Symmetric cryptography depends on the existence of a secret
key shared among both peers. As shown by Luykx and Paterson
in [4], an update of the cryptographic key is required from
time to time because of key degradation. However, the ongoing
communication flow shall never be interrupted. A rekeying
procedure requires computational resources (i.e., computing
power and time) and possibly additional message exchanges.
Thus, the rekeying is no immediate action. For a speedup of the
rekeying a second key may be prepared for future use in the
background. For every message, the legitimate receiver must be
able to identify and look-up the cryptographic key for message
decryption. Several requirements apply to this process. First, it
shall be unambiguous and deterministic, that is, there must not



Peer 2Peer 1

Key ManagementKey Management

Consumer 

Unit

Provider 

Unit

Provider 

Unit

Consumer 

Unit

Unreliable 

Channel

Key

KeyId

Key

KeyId

Figure 2. The extended communication model introduces cryptographic keys
to enable encryption and decryption operations. These operations happen in
the provider/consumer units and use the provided key, which is referred to by
a KeyId. The key management, provides functionality to perform rekeying.

be the need for multiple decryption attempts under different
possible keys, because real-time requirements forbids this.
In [14] the inventors describe a seamless rekeying approach,
which is based on testing all keys at hand. Second, it shall
be low-latency and local, that is, it must not involve complex
computations or interactions. Additionally, any rekeying shall
happen synchronized between two peers, that is, the usage of
a new key shall be allowed only if the other peer is able to
process a message being encrypted with that key.

In order to distinguish keys of different generations from
each other, they are designated by a Key Identifier (KeyId).
As shown in Fig. 2 the key management is responsible for
providing new symmetric keys with an associated KeyId. We
assume the KeyId refers to a single key only. However, it is
possible to use the KeyId to refer to several keys or other
information.

IV. GENERIC SEAMLESS REKEYING MECHANISM

A. Rekeying Roles

In the following, we break the symmetry of the model
to represent the OT reality, in which a single PLC may
communicate with many devices, while a single device may
only have a single connection to a PLC. Such an architecture is
shown in Fig. 3, where each gray box represents a peer within
an OT network. The communication always occurs in a one-
to-one manner, however a single device (e.g., PLC) may have
many of those relations. To allow the peer with many other
relations to schedule the, possibly computationally expensive,
rekeying procedures, we define it as an initiator, which always
initiates the rekeying. The other peer is called the follower,
which follows the initiated rekeying procedure.

B. Provision of Multiple Keys

Given the requirements stated in the previous section,
we postulate: First, the switch to a new key shall happen
instantaneously (i.e., low-latency) and second, it shall be
possible to process delayed messages, which were potentially
encrypted with an old key. In order to meet these requirements,
one possible solution is to maintain at least two slots, of
which one contains an active key. A slot is a container for
a cryptographic key and potentially other information, and

Follower

Initiator Follower

Initiator Follower

Initiator

Figure 3. In an OT network a PLC (left) might have many one-to-one
communication relations to field devices (right). The PLC fulfills the role of
the initiator to schedule the workload of rekeying.

is referred to by the KeyId. The other slot(s) may either be
used for future key generations and may be prepared in the
background without interrupting the active communication or
for old keys, which are still valid for a pre-defined period
of time. The amount of slots within the initiator and the
follower may be different. However, there must exist a way
to unambiguously and deterministically decide which key has
been used for the cryptographic operation. In addition, both
peers shall know which slot will be used next in case of a
rekeying.

A single slot, like shown in Fig. 2 is insufficient, because
the flow of data might be interrupted during a rekeying
procedure and any message encrypted with the previous key
can not be decrypted anymore. Using two slots is sufficient to
enable a seamless rekeying and allows decrypting messages
of the previous key generation, for as long as no rekeying
overwrites this old key. To support the usage of the previous
key continuously or even older keys, a third or 𝑛-th slot may
be involved. However, the KeyId must be unique along all slots
to allow an unambiguous look-up. For further explanation we
will use two slots (A and B) as shown in Fig. 4 of which one
slot is in use, while the other is free for preparation.

Each consumer and provider unit map their view onto the
data within a single slot into one of the following properties:

∙ Unused: The slot contains no valid key.
∙ Pending: The slot contains a valid, yet unused key, which

is ready for subsequent usage.
∙ Active: The slot contains a valid key, which is actively

used for encryption and decryption, respectively.
∙ Obsolete: The slot contains a still-valid key, which is

phasing out, i.e., it will become unused after a specified
amount of time.

When using two slots, the state space becomes the Cartesian
product of the state space of two single slots. It yields
16 different states, of which, however, nine correspond to
situations, which should not occur in practice (e.g., two active
slots). The remaining set of valid states is shown in Fig. 5
as a state diagram of a finite state machine (FSM). Changing
the state is done by one of the following transitions: (a) Push,
which loads a new cryptographic key into a currently unused
slot, (b) Switch, which marks the pending slot as active and



Initiator Follower
S
lo

t 
A

Key ManagementKey Management

Consumer 

Unit

Provider 

Unit

Provider 

Unit

Consumer 

Unit

Unreliable 

Channel

Key

0-RTT 

Update

n-RTT 

Update

KeyId

0-RTT 
Update

n-RTT 
Update

S
lo

t 
B

Key

KeyId

S
lo

t 
A

Key

KeyId

S
lo

t 
B

Key

KeyId

FSM

FSM

FSM

FSM

Figure 4. Both peers incorporate two slots containing a cryptographic key
identified by the KeyId. Each provider/consumer unit maintains its own state
of the slots via an FSM. Key renewal may occur either by a message-less
0-RTT or a message-based n-RTT update.

Push

A active 

B unused
Switch A pending 

B active

SwitchA active 

B pending

Push

A unused 

B active

A unused 

B unused

Push

Time- 

out A active 

B obsolete

Time- 

outA obsolete 

B active

Figure 5. Valid state combinations of a view onto slots A and B. Transitions
are either performed by pushing a new key into a slot, switching to a pending
slot, or by the occurrence of a timeout for an obsolete key.

the currently active slot as obsolete and (c) a Timeout, which
invalidates an obsolete key after a specified amount of time.

As shown in Fig. 4 each consumer unit and each provider
unit consists of such an FSM to maintain the state of the shared
slots independently of each other. That allows the provider and
consumer unit of a peer to use different keys for encryption
and decryption respectively. This situation may occur during
the time interval in which outgoing frames are encrypted with
the new key, however incoming frames have to be decrypted
using the previously used key. The same holds true for the
opposite direction, that is the follower, which might receive
delayed messages that were encrypted with the old key, while
the outgoing frames use the new key.

C. Identification of the Used Key

Both communicating peers must be able to identify the key
used for protecting the message. This could be either performed
explicitly by communicating the KeyId of the involved key, or
by signaling the used slot. However, the latter requires both
peers to know the state of the slots from each other. That is,
each peer is able to derive in which slot the current key is
situated on the other side. As both peers may have a different
amount of slots, this approach becomes even more difficult.

currentKeyId nextKeyId

Security Metadata

Figure 6. The seamless rekeying introduces a header containing metadata
necessary to perform rekeying. This metadata is sent along the payload, which
may be the actual application data.

D. Signaling of Rekeying

Any rekeying originates from the initiator, based on domain-
specific triggers that are, for example the current sequence
number or the key degradation status. For this purpose a signal
indicating the kind of key update, is sent from the initiator to
the follower. In return the follower sends a signal when the
generation of the new key is done, and it is ready to be used
subsequently. We incorporate two different kinds of rekeying:

∙ 0-RTT rekeying: Each peer executes a deterministic
KDF (key derivation function) locally. No dedicated
message exchange is required, however no additional
entropy is added to the key.

∙ n-RTT rekeying: By communicating with each other
the peers agree on a new key (e.g., Diffie-Hellman key
exchange). It is computationally more complex than a
KDF and requires additional messages, however adds new
entropy to the key.

After performing the rekeying, this new key is stored into
the currently unused slot. In consequence that slot is marked
as pending. Refer to fig. 5 with its Push transitions. At the
follower’s side, the necessity of a rekeying is announced by
the initiator. However, an immediate switch to that new key
is not valid, as the other slot is not ready yet on follower’s
side. Thus, the current slot is still in use for cryptographic
operations. A switch to the pending slot will be valid, when
both peers are ready to use the new key. Consequently, the
follower updates the key as requested by the initiator and stores
it into the unused slot assigning the new KeyId and marks that
slot as pending. Afterwards it signalizes to the initiator that it
is ready to use the new key. Now, both participants are ready to
use the new key and eventually perform a seamless switch to
the new key without interrupting the ongoing communication.
The signalization is embedded into the cyclic messages and
requires only a few bits.

V. SEAMLESS REKEYING PROTOCOL

Subsequently, we introduce a protocol to realize the prior
mentioned concept of a seamless cryptographic rekeying.
That protocol consists of a header containing metadata. This
header information is sent with every cyclic message to
synchronize the preparation and usage of cryptographic keys.
By involving AEAD schemes it is treated as AD and therefore
being transmitted in the clear, however, still protected against
undetected manipulation.

One way to realize the signaling of rekeying and which key
was used for encryption is to use the KeyId and additionally
encoding the kind of intended rekeying into it. For this purpose,



L
e
g
e
n
d

A active 
B unused

(x,y) Used KeyId x, prepare-to-use KeyId y (x,y) Used KeyId x, ready-to-use KeyId y

A active 
B pending

A unused 
B active

A pending 
B active

Consumer/Producer
State:

Initiator Follower

1.2
K

ey
 M

an
ag

em
en

t 
(I

n
it
ia

to
r)

K
ey

 M
an

ag
em

en
t 

(F
o
llo

w
er

)

-

Push 

(1.1,1.2)

(1.2,1.2)

(1.2,1.2)

(1.1,1.2)

(1.2,1.2)

(1.1,1.2)

(1.1,1.1)

Time

P
-S

ta
te

(1.1,1.2)

(1.1,1.1)1.1

-

(1.1,1.1)

Switch  
  

Slots 

Prepare 
Rekeying

Push 
   

A B C
-S

ta
te

P
-S

ta
te

1.2

-1.1

-

Slots 

A B 

Switch 
  

C
-S

ta
te

Figure 7. Rekeying is commanded by the initiator by incrementing the nextKeyId. The follower indicates its readiness by setting the nextKeyId to the prepared
KeyId. P-State and C-State referrers to the view on the slots from the perspective of the producer and consumer unit respectively.

we include two different KeyIds into the header as shown in
Fig. 6. The former currentKeyId is used to indicate which key
has been used for the encryption operation. The latter nextKeyId
is used to signal rekeying. Its semantics depend on the role
of the peer (either initiator or follower). In case of initiator, it
is used to announce an imminent rekeying to the follower. In
contrast, the follower uses the nextKeyId to indicate which key
is ready to be used.

To encode the kind of rekeying into the KeyId the following
approach is used: The KeyId consists of the concatenation of
the amount of n-RTT key updates, and the amount of 0-RTT
key updates since the last n-RTT key update. For example,
KeyId = 2 ‖ 3 is considered to be the key resulting after
executing two n-RTT key updates and three 0-RTT key updates
since the last n-RTT key update.

A full example of such a seamless rekeying is shown in
Fig. 7. In contrast to existing solutions, our approach features
an explicit signalization of an imminent rekeying procedure via
a static embedding of a few-bits header into cyclic messages.

VI. INTEGRATION INTO PROFINET IO
Within the realm of industrial Ethernet protocol families,

one commonly used technology is PROFINET. For cyclic
data (like process data) the PROFINET IO RTC (real-time
cyclic) protocol is used. We show a proposal on integrating
the aforementioned seamless rekeying protocol into the RTC
frame structure. For that purpose, the header is integrated
into the RTC frame header after the frameID. We assume the
existence of adequate mechanisms to cryptographically protect
RTC messages, which may use the presented rekeying protocol.
The resulting structure is shown in Fig. 8.

From the perspective of a legacy security unaware participant
or intermediary, the security header is interpreted as part of the
payload (e.g., IO data). However, a security aware participant
is able to interpret the relevant bits as previously described.
In terms of PROFINET vocabulary the IO-Controller (IOC)
possesses the role of the initiator, while the IO-Device (IOD)
the follower. Between those components exist two reciprocal
communication relations (CRs), which both provide a one-way
communication from a provider protocol machine (PPM) to
a consumer protocol machine (CPM). The PPM maps to the
provider unit, and the CPM to the consumer unit mentioned
above.

Furthermore, we assume a key hierarchy consisting of
a master key (result of a key agreement function) and a
communication key (derived from the master key by a KDF).
Each KeyId referrers to a specific combination of a master key
and a communication key. Hence, each update of either the
master key or the communication key implies an update of
the KeyId. An update of the communication key increments
the communication key index and performs a 0-RTT rekeying.
Similarly, an update of the master key increments the master
key index, however, resets the communication key index to zero
and performs an n-RTT rekeying. The KeyId is a concatenation
of these two indices.

From the perspective of the PPM, valid KeyIds are the
currently active key only. In contrast, from the perspective of
the CPM the current KeyId, the preceding KeyId and the next
KeyId, either by 0-RTT or n-RTT rekeying, are valid values.
To differentiate between the current, preceding and following
KeyId from each other, at least two bits of information are



currentKeyId nextKeyId IO-DataframeId APDU Stat.

Figure 8. PROFINET IO RTC frame with additional currentKeyId and
nextKeyId fields for rekeying purposes.

required. As the KeyId is now a concatenation of two key
indices, it results in a minimum width of 4 bits. Combining
currentKeyId and nextKeyId we fill a single octet.

VII. FPGA-BASED DEMONSTRATOR

Given the concept of the seamless key update in theory
we developed a demonstrator that consists of several dummy
PROFINET components. One of these dummies acts as
an IO controller, whereas one or more act as IO devices.
Each component is implemented on a DIGILENT Zybo Z7
development board, using the Zynq 7000 architecture, which
incorporates a programmable logic (FPGA) and an ARM-based
processing system on a single chip. This design choice allows us
to offload less time-critical task into software, while performing
time-critical tasks in hardware.

For demonstration purposes no entire PROFINET protocol
stack, but only PROFINET IO RTC with the modifications
mentioned in the previous section has been realized for real-
time cyclic communication. To this end, a suitable packet parser
and packet generator has been implemented in programmable
logic for being able to receive and transmit security-enabled
PROFINET IO RTC packets. In addition, a module responsible
for slot management and handling of the security metadata
has been implemented in hardware because of its time critical
nature. Also, an interface for performing the cryptographic
operations has been defined, however a real crypto engine is
not implemented yet, but is intended for future work. Currently,
a dummy engine is used, which takes a block of input data,
performs a XOR operation with the key, and outputs the result.
In case of authentication-only the previous block is XORed
with the current result, thus producing a simple ICV. The
absence of a real crypto engine however does not affect the
validation results, as the rekeying procedure is independent of
the actual cryptographic operations. Although, any error in key
handling (e.g., usage of the wrong key) would have even been
detected by our dummy engine. The generation and validation
of payload, key derivation, generation of new security contexts
and configuration of the hardware modules is performed by
software modules. For this purpose either FIFO buffers or
mapped memory is used to access the content of hardware
registers by software. This demonstrator is used to test the
concept of a seamless key update in a real-world application.
Several tests have been successful and provide a platform for
further work, e.g., including a real cryptographic engine.

VIII. CONCLUSION AND OUTLOOK

In order to cryptographically protect communication in real-
time industrial communication systems rekeying is required
from time to time. With the proposed protocol it is possible to
perform rekeying without interrupting the data flow and without

additional messages. All required metadata is sent piggyback
with every message. Nonetheless, it is still possible to perform
a message-based key exchange to add new entropy to the key.
The protocol has been successfully tested on an FPGA-based
demonstrator. For future work, the proposed protocol may
be translated into a formal specification. This would allow
performing model-checking to prove its correctness under all
circumstances given the timing requirements. Automatic code
generation based on a configurable model (e.g., amount of
slots, time until timeout, . . . ) would make the adaptation and
implementation easier, and might also be topic for future work.

ACKNOWLEDGMENT

Our work presented herein has significantly been informed by
our participation in the Security Working Group of PROFIBUS
& PROFINET International. We would like to thank the
members for fruitful discussions. However, assumptions made
herein regarding security extensions for PROFINET solely
serve the purpose of showcasing our rekeying mechanism in a
typical setting. There are no claims regarding official security
extensions for PROFINET.

REFERENCES

[1] M. Felser, M. Rentschler, and O. Kleineberg, “Coexistence Standardiza-
tion of Operation Technology and Information Technology,” vol. 107,
no. 6, pp. 962–976, 2019.

[2] F. Klasen, V. Oestreich, and M. Volz, Industrial Communication with
Fieldbus and Ethernet. VDE-Verlag, 2011.

[3] T. Müller, A. Walz, M. Kiefer, H. Dermot Doran, and A. Sikora,
“Challenges and prospects of communication security in real-time ethernet
automation systems,” in 2018 14th IEEE International Workshop on
Factory Communication Systems (WFCS), 2018, pp. 1–9.

[4] A. Luykx and K. G. Paterson, “Limits on authenticated encryption
use in tls,” Personal webpage. [Online]. Available: https://www.atul.be/
aelimits_2017_08_28.pdf

[5] D. McGrew, “An Interface and Algorithms for Authenticated
Encryption,” RFC 5116, Jan. 2008. [Online]. Available: https:
//rfc-editor.org/rfc/rfc5116.txt

[6] J. Longo, D. P. Martin, L. Mather, E. Oswald, B. Sach, and
M. Stam, “How low can you go? Using side-channel data to
enhance brute-force key recovery,” Tech. Rep. 609. [Online]. Available:
https://eprint.iacr.org/2016/609

[7] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347, Jan. 2012. [Online]. Available: https:
//rfc-editor.org/rfc/rfc6347.txt

[8] H. T. E. Rescorla, “The datagram transport layer security (dtls) protocol
version 1.3,” Internet Engineering Task Force (IETF), Tech. Rep. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13

[9] “Ieee standard for local and metropolitan area networks-media access
control (mac) security,” IEEE Std 802.1AE-2018 (Revision of IEEE Std
802.1AE-2006), pp. 1–239, 2018.

[10] C. M. Lonvick and T. Ylonen, “The Secure Shell (SSH) Transport
Layer Protocol,” RFC 4253. [Online]. Available: https://rfc-editor.org/
rfc/rfc4253.txt

[11] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” RFC 4306.
[Online]. Available: https://rfc-editor.org/rfc/rfc4306.txt

[12] M. Runde, S. Hausmann, C. Tebbe, B. Czybik, K.-H.
Niemann, S. Heiss, and J. Jasperneite, “Sec_pro: sichere
produktion mit verteilten automatisierungssystemen,” 2014. [Online].
Available: https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/
docId/499/file/SEC_PRO_Abschlussbericht_final.pdf

[13] C. A. Long, W. R. Worger, and B. R. Schaefer, “Method and apparatus
for seamless crypto rekey system,” Aug. 17 1999, US Patent 5,940,508.

[14] J. Åkerberg and L. Thrybom, “Methods and devices for security key
renewal in a communication system,” Jan. 5 2016, US Patent 9,231,929.

All links were followed on January 21, 2021.

https://www.atul.be/aelimits_2017_08_28.pdf
https://www.atul.be/aelimits_2017_08_28.pdf
https://rfc-editor.org/rfc/rfc5116.txt
https://rfc-editor.org/rfc/rfc5116.txt
https://eprint.iacr.org/2016/609
https://rfc-editor.org/rfc/rfc6347.txt
https://rfc-editor.org/rfc/rfc6347.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13
https://rfc-editor.org/rfc/rfc4253.txt
https://rfc-editor.org/rfc/rfc4253.txt
https://rfc-editor.org/rfc/rfc4306.txt
https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/docId/499/file/SEC_PRO_Abschlussbericht_final.pdf
https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/docId/499/file/SEC_PRO_Abschlussbericht_final.pdf

	Introduction
	Related Work
	Communication Model
	Basic OT Communication Model
	Cryptographic Requirements

	Generic Seamless Rekeying Mechanism
	Rekeying Roles
	Provision of Multiple Keys
	Identification of the Used Key
	Signaling of Rekeying

	Seamless Rekeying Protocol
	Integration into PROFINET IO
	FPGA-based Demonstrator
	Conclusion and Outlook

