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Abstract—It seems to be a widespread impression that the
use of strong cryptography inevitably imposes a prohibitive
burden on industrial communication systems, at least inasmuch
as real-time requirements in cyclic fieldbus communications are
concerned. AES-GCM is a leading cryptographic algorithm for
authenticated encryption, which protects data against disclosure
and manipulations. We study the use of both hardware and
software-based implementations of AES-GCM. By simulations as
well as measurements on an FPGA-based prototype setup we gain
and substantiate an important insight: for devices with a 100 Mbps
full-duplex link, a single low-footprint AES-GCM hardware engine
can deterministically cope with the worst-case computational load,
i.e., even if the device maintains a maximum number of cyclic
communication relations with individual cryptographic keys. Our
results show that hardware support for AES-GCM in industrial
fieldbus components may actually be very lightweight.

Index Terms—Security, Cryptography, Real-time Systems,
Industrial Automation, Benchmark

I. INTRODUCTION

Today, it is understood that industrial communications in-
creasingly face the demand for strong cryptographic protection
against malicious data manipulations or injections [1]. The
demand also applies to fieldbus communications, in particular, if
these are based on widespread standard protocols like Ethernet
and TCP/IP [2, 3].

Fieldbus communication systems are traditionally designed
to meet strict reliability and real-time requirements [4]. It
is only since some time that security requirements were
added to the list. As cryptographic message protection comes
with considerable computational complexity, cryptographic
protection is commonly perceived to conflict with the real-
time requirements of industrial fieldbuses.

Indeed, measurements on typical platforms showed that
the software-based protection (i.e., authentication with or
without encryption) of messages with typical state-of-the-art
symmetric cryptographic algorithms easily takes more than
one millisecond [5, 6]. Having said that, for Ethernet-based
fieldbuses like PROFINET, one millisecond is in fact a common
cycle time. Sending and receiving cryptographically protected
messages at such a frequency, therefore, seems clearly out of
reach. For programmable logic controllers (PLCs) the situation

seems to be even worse: one PLC potentially needs to serve a
large number of field devices at once, and this factor directly
seems to scale down the prospects of applying cryptographic
protection in such scenarios. Interestingly, a cryptographic co-
processor does not necessarily improve the situation, as the
initialization, supply of input and retrieval of output may take
longer than the cryptographic operation itself [6].

On the other hand, the existence of MACsec (the IEEE stan-
dard1 for link-layer encryption [7]) deployments demonstrate
that strong cryptographic protection is possible at link speed,
e.g., within routers [8]. This observation is encouraging, but
deserves a closer inspection: on MACsec links there is typically
only one cryptographic key in use that tends to be updated rarely
(on the order of minutes or even hours). For a PLC, the situation
is different, as it might need to process a burst of short messages
each with an individual key (one for each communication
partner) within a single cycle time (i.e., potentially within a
millisecond or less). As many cryptographic algorithms require
the precalculation of key-dependent internal state, updates of the
key can cause additional—potentially significant—delays [9].
The high-throughput hardware powering MACsec is therefore
not automatically equally suitable for protecting the cyclic
communication of a fieldbus layer.

From this, system designers are left with an unsatisfactory
situation: software-only implementations of cryptography were
shown to not provide the necessary performance, while the
use of dedicated high-throughput hardware is not proven to
do better for high key switching frequencies. It led us to
believe that at least PLCs will not do without multiple dedicated
high-performance cryptographic hardware engines to serve
potentially hundreds of different communication relations (CRs)
at high frequency. From discussions with others involved in
industrial automation, we deduce that we were not the only
ones with this belief.

We set out to shed light on the matter and strive to
answer two important questions with this paper. What are
the timing requirements that a cryptographic engine needs
to meet in a PLC if all its cyclic communication shall be

1IEEE 802.1AE
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cryptographically protected?, and Does it really require highly
specialized cryptographic hardware to meet these requirements?
We approach the two questions by first calculating timing
boundaries for the necessary cryptographic computations in a
PLC given the Ethernet interface’s bandwidth constraints. We
then relate these numbers, on the one hand, to the capabilities of
a cryptographic hardware engine, whose performance figures
we obtain via simulations and measurements on an FPGA
prototype setup, and, on the other hand, to the performance of
a corresponding software implementation on an ARM Cortex
A9 dual-core processor clocked with 667 MHz.

For our study, we decided to focus on the Advanced
Encryption Standard (AES) cipher [10] in Galois/Counter
Mode (GCM) mode [11], referred to as AES-GCM. AES-GCM
is among the most popular and most respected symmetric cipher
modes for authenticated encryption [12]. It is the only cipher
mode that is supported by MACsec [7].

We believe our work is a valuable extension of previous
work. First, we not only measure the performance of a
lightweight AES-GCM hardware engine, but we relate the
obtained numbers to the particular performance requirements
of PLCs. Second, we study AES-GCM as a state-of-the-art
algorithm that supports both authenticated encryption and
authentication-only scenarios. Other work mostly concentrated
on pure authentication-only algorithms (like HMAC [13]) and
nowadays considered-obsolete modes (like AES-CBC [14]).

Our paper is structured as follows. Section II provides
some background on industrial fieldbus communication as well
as cryptography as a means to protect such communication.
Section III discusses related work. In Section IV we derive
timing requirements for cryptographic computations in a PLC.
In Section V we consider three viable implementation options
for a cryptographic engine. In Section VI we describe our
evaluation setup and present the results in Section VII. Finally,
in Section VIII we summarize the results and give an outlook
on further activities.

II. BACKGROUND

This section provides a condensed recap of (industrial)
fieldbus and cryptography basics, which are important to
understand this paper.

A. Fieldbus Basics

Fieldbuses are used for distributed industrial control ap-
plications like factory or process automation [4]. There is a
plethora of different Ethernet-based fieldbuses, e.g., PROFINET,
Modbus/TCP, or EtherNet/IP, most of them being standardized
in the international norms IEC 61784 [15] and 61158 [16].

Ethernet-based fieldbuses differ in several respects, but all
share the capability to exchange input and output (IO) data
between involved system entities in a cyclic manner and at high
frequency [17]. Cyclic here means that producers of IO data
transmit the same type of data with updated content periodically,
i.e., once per cycle time (e.g., once per millisecond). The form
and multiplicity of possible producer-consumer relations, in
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Figure 1. The authenticated encryption with associated data (AEAD) mode
of operation illustrated. “PT” is plaintext, “CT” is ciphertext, “ICV” is interity
check value, “AAD” is additional associated data, and “IV” is initialization
vector. “PT”, “CT”, and “AAD” are variable-length data, “Key”, “IV”, and
“ICV” are fixed-length data.

the following referred to as communication relations (CRs),
differ from fieldbus to fieldbus.

For all fieldbuses, the transmission of IO data (from
producers to consumers) must succeed deterministically within
certain time boundaries. Some fieldbuses target only mild time
boundaries, in which case communication may be based on
standard TCP/IP, whereas other fieldbuses target very tight time
boundaries [18]. Fieldbuses of the latter kind often transmit IO
data in layer-2 Ethernet frames directly to minimize protocol
overhead.

B. Cryptography Basics

Cryptography is the major means to achieve secure communi-
cations in open networks. Symmetric cryptographic algorithms
are the “workhorse”, facilitating the protection of bulk data
against disclosure (encryption) and manipulation or spoofing
(authentication) using a cryptographic key shared between the
legitimate communication entities. Asymmetric cryptographic
algorithms are the counterpart and help to share or distribute
the required symmetric keys securely. In the following, we
purely focus on symmetric cryptographic algorithms.

Classically, symmetric message encryption (privacy protec-
tion) and authentication algorithms were two distinct building
blocks [19]. Today, the leading category of operation modes is
authenticated encryption with associated data (AEAD), which
combines both encryption and authentication into a single
primitive [20].

An AEAD primitive supports two distinct operations, which
are authenticated encryption and authenticated decryption
(see Fig. 1). Input to authenticated encryption is a fixed-
length symmetric cryptographic key, a fixed-length unique
initialization vector (IV), a variable-length bit string of plaintext
(PT) and a variable-length bit string of additional associated
data (AAD). It outputs a variable-length bit string of ciphertext
(CT), which is the encrypted plaintext (same length but
encrypted content), and a fixed-length integrity check value
(ICV)2. The ICV covers both the plaintext and the additional
associated data.

2Note that, often, the ciphertext is defined as comprising both the encrypted
plaintext and the integrity check value (see, e.g., RFC 5116 [21]). Here and
in the following discussions, we intentionally keep CT and ICV as separate
data elements.
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Figure 2. Simplified visualization of the AES-GCM cryptographic engine and
its AEAD-interace

Input to authenticated decryption, which is the reverse opera-
tion to authenticated encryption, is the symmetric cryptographic
key, the initialization vector, the ciphertext, and the additional
associated data as used for authenticated encryption. It outputs
the decrypted plaintext after successful verification of the ICV
or an error indication if the verification failed.

An interesting feature of AEAD modes as described above
is that they allow both authentication-only protection as well
as authenticated encryption with the same algorithm. The
choice between these two options is just governed by the
input to which to-be-protected data is supplied: if given to the
plaintext (PT) input, data is authenticated and encrypted; if
given to the additional associated data (AAD) input, data is
only authenticated. However, it is perfectly fine (and a quite
typical case) to supply one portion of data (e.g., a message’s
payload) to the PT input and another portion of data (e.g., a
message’s header) to the AAD input.

AES-GCM refers to an AEAD mode, which uses the AES
cipher [10] in Galois/Counter Mode (GCM) mode [11]. AES-
GCM supports key sizes of 128, 192, and 256 bits. Simply
put, AES-GCM performs encryption by xor-ing plaintext
data with a key-dependent stream of pseudo-random data
produced using the AES cipher, and authentication using a
universal hash function. The ICV3 produced by AES-GCM’s
authenticated encryption has 16 bytes. If AES-GCM is used
in an authentication-only setting, it is sometimes also referred
to as AES-GMAC.

A simplified visualization of an architecture to perform AES-
GCM authenticated encryption is shown in Fig. 2.

III. RELATED WORK

Numerous implementations and implementation optimiza-
tions of AES-GCM were proposed and studied with respect to
their performance [22–25]. However, these studies did not
consider the special demands of cyclic industrial fieldbus
communication.

Czybik et al. [5] and Runde et al. [6] filled the gap and
studied the performance of different cryptographic algorithms—
including AES-GCM and AES-GMAC—for cyclic industrial
fieldbus communication. Müller and Doran studied the per-
formance of further message authentication algorithms in the

3The specification of the GCM mode [11] refers to the integrity check
value (ICV) as authentication tag. In some contexts, it is also called message
authentication code (MAC). As a synonym, we use ICV throughout this paper.

context of PROFINET [26, 27]. From these studies, one can
infer that cryptographic computations may easily conflict with
short cycle times on a number of platforms. However, these
works do not investigate the actual timing requirements that
a cryptographic implementation powering a PLC must meet,
and they also do not investigate the prospects of dedicated
cryptographic hardware engines.

IV. TIMING REQUIREMENTS

Before studying the performance of a particular crypto-
graphic algorithm, our goal is to calculate the maximum time
𝑡max a cryptographic engine on a PLC has available to process
either one incoming or one outgoing IO data frame. To this
end, we collect all the related requirements and boundary
conditions of a typical PLC in an Ethernet-based real-time
fieldbus system. We perform this analysis using PROFINET
[28] as the underlying technology. However, similar automation
systems will lead to similar results.

We assume there is a central PLC that maintains a variable
(but fixed-at-runtime) number 𝑁 of communication relations
(CRs) with different field devices. We consider a CR as a
pair of reciprocal producer-consumer relations between exactly
two system entities (that is, real-time data is exchanged in
both directions). Our model is inspired by that of PROFINET
IO, where a PROFINET IO Controller maintains one or more
pairs of IO CRs to one or more PROFINET IO Devices4. In
this spirit we also assume that cyclic IO data is exchanged
within layer-2 Ethernet frames, just as PROFINET with its
RTC protocol does.

We make the following assumptions:
∙ The PLC is equipped with a full-duplex Ethernet link

with a data rate 𝑅 of 100 Mbit/s, through which all its
real-time communications must proceed.

∙ A network load 𝜂 of 50% is not exceeded, that is, during
one communication cycle at most half of the time is used
for transmitting/receiving real-time IO data.

∙ The size of the IO data is between 44 and 1444 bytes.
∙ The size of IO data is identical for all frames.
∙ For each CR, there is one incoming and one outgoing

frame per communication cycle.
∙ A single cryptographic engine is used for both incoming

and outgoing frames respectively.
∙ Each CR is protected using a CR-specific cryptographic

key.
Each message, typically IEEE 802.3-tagged Ethernet frames,

sent over the line starts with an Ethernet header consisting of
a preamble, start frame delimiter, source and destination MAC
addresses, type field, and a VLAN tag, resulting in a 26 bytes
Ethernet header. We assume that the subsequent fieldbus header
(without security-related data) is two bytes long. Protected
communication is enabled by adding two security-related fields:
a one-byte key identifier and a four-bytes sequence counter. The
length of the fieldbus header for protected frames, therefore,

4Note that a PROFINET IO CR is unidirectional and that, therefore, a CR
as used by us maps to a pair of PROFINET IO CRs.
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Figure 3. Frame structure of the protected frames given two operation modes:
(1) Authenticaiton Only on top, which appends an ICV to the to-be-protected
message and (2) Authenticated Encryption on bottom, which encrypts the
payload and appends an ICV. The Fieldbus Header and the payload are the
to-be-protected data.

sums to seven bytes. After that follows the actual payload
(44 to 1444 bytes), an 16-bytes (128-bit) ICV, the Ethernet
frame check sequence (FCS) with four bytes, and finally the
interpacket gap with 12 bytes. The resulting frame layout is
shown in Fig. 3. Given this frame structure, the actual Ethernet
frame length is

𝑙 = 26 +
(︁
7 + [44 . . . 1444] + 16

)︁
+ 4 + 12

= [109 . . . 1509] bytes.
(1)

We distinguish two operating modes: Authentication Only
and Authenticated Encryption. In the first mode, the fieldbus
header and the payload are concatenated and given to the
AAD input of AES-GCM. The resulting ICV is appended to
the message payload, which is being transmitted unencrypted.
In the second mode, only the fieldbus header is given to the
AAD input of AES-GCM, the payload is fed into the PT
input. The resulting ciphertext (which is the encrypted payload)
replaces the cleartext payload in the message. Again, the ICV
is appended. The respective message structures are shown in
Fig. 3. The length of the inputs to AES-GCM are summarized
for both minimum and maximum-length frames in Table I.
Important to note here is that the resulting frames have identical
lengths for both operation modes.

The maximum amount of CRs that the PLC may simultane-
ously maintain depends on the assumed size of the real-time
payload, because the network load 𝜂 and the data rate 𝑅 are
assumed to be fixed. The longer the payload gets, the fewer
CRs are possible. The number 𝑁 of CRs that can be served
within a single communication cycle 𝑇 given a network load 𝜂
must be an integer number, which can be derived for a payload
length 𝑙 as follows (⌊⌋ denotes rounding down to an integer):

𝑁 =

⌊︂
𝜂 ·𝑅 · 𝑇

𝑙

⌋︂
(2)

Since we assume that all frames are of the same length
and that each CR uses its own key, the cryptographic engine
must cope with a high key switching frequency. Furthermore,
it must be fast enough to process all incoming and outgoing
frames of all CRs within a single communication cycle. As a

Table I
LENGTH (IN BYTES) OF INPUT TO THE CRYPTOGRAPHIC ENGINE FOR

MINIMAL-LENGTH AND MAXIMAL-LENGTH FRAMES, SHOWN SEPARATELY
FOR PT AND AAD INPUT.

Minimum Frame Length Maximum Frame Length

Mode PT AAD PT AAD

Auth. Only 0 51 0 1451
Auth. Enc. 44 7 1444 7

single CR results in one outgoing and one incoming frame per
communication cycle, the load on the cryptographic engine is
effectively doubled. Using the maximum number of CRs from
Eq. (2) we get:

𝑡max(𝑙) =
𝑇

2 ·𝑁
=

𝑇

2

⌊︂
𝜂 ·𝑅 · 𝑇

𝑙

⌋︂−1

(3)

Observe that 𝑡max(𝑙) is approximately independent of the
assumed cycle time 𝑇 (𝑇 remains in Eq. (3) because of the
rounding operation). This is plausible because one can consider
outgoing or incoming cyclic IO data as a stream of independent
frames. The above equation Eq. (3) relates the maximum time a
cryptographic engine may take to process these frames on-the-
fly to the rate with which they can pass through the network
interface. From this perspective, it is irrelevant whether two
chronologically-nearby frames correspond to two distinct CRs
in the same communication cycle or to the same CR but in
distinct communication cycles.

Using concrete numbers (𝜂 = 0.5, 𝑅 = 108 bits/s,
𝑇 = 1 ms), from Eq. (3) we obtain a maximum processing
time of 𝑡max(109 bytes) = 8.77 µs per frame for minimum-
length frames and of 𝑡max(1509 bytes) = 125 µs per frame for
maximum-length frames (cf. Eq. (1)).

V. IMPLEMENTATION OPTIONS

Given the aforementioned requirements, we consider three
viable designs to implement an engine for performing crypto-
graphic operations. These three options are: (1) All operations
are computed in dedicated hardware (e.g., FPGA or ASIC),
(2) involves a generic CPU (e.g., RISC) without AES specific
instructions and (3) uses a generic CPU however with dedicated
AES instructions to calculate the cryptographic operations.

These three options shall provide an overview of possible
implementations of the core cryptographic engine. Our actual
implementation is presented in Section VI.

A. HW-only

This option dedicates a piece of hardware solely to the
purpose of executing cryptographic operations. As we use AES
in GCM mode these operations mainly consist of substitution
(e.g., lookup) and permutation (e.g., shifting and mixing)
steps plus XOR operations. All these operations are easy to
implement and can often be executed in a single clock cycle.

The functional structure of AES allows parallelizing these
operations, for example by computing all rounds of AES in a
single clock cycle by duplicating and cascading the relevant



hardware blocks. Like often in hardware designs this results in
a tradeoff between throughput vs. area vs. power consumption.

B. SW-only

In contrast to the hardware-based implementation of a cryp-
tographic engine, all the steps to compute an AES encrypted
block can also be performed on a general-purpose CPU (e.g.,
ARMv7 or x86). A software-only approach allows introducing
a cryptographic engine retroactively. Given the number of
shipped devices in industrial communication systems, it is
tempting to extend those devices with a software update to
enable security. However, one has to consider the additional
processing load. There exist manifold optimizations techniques
for AES to reduce the computation load as shown in [29–31].

C. SW with HW-acceleration

Another approach to implement AES operations is by
involving dedicated instruction set extensions, like AES-NI by
Intel [32] or the ARMv8 cryptographic extensions by ARM.
Those instructions improve the speed and security of AES
instructions. Typically, these instructions perform one round
of AES per instruction, which is a major performance boost
compared to the SW-only solution.

VI. IMPLEMENTATION ON ZYNQ-7000

In our studies, we considered the aforementioned HW-only
and SW-only approach by implementing both variants on a
Xilinx Zynq-7000 SoC development board. It consists of an
FPGA and a processing system (PS) that contains an ARM
Cortex A9 dual-core processor clocked with 667 MHz. This
design choice allows us to demonstrate a proof of concept for
the HW-only solution, as well as, to evaluate the performance
of a SW-only solution. However, we could not pursue the third
approach using SW plus HW-acceleration, because the given
processor (ARMv7) does not support an AES instruction set.
An overview of this system including the high level descriptions
of relevant submodules is given in Fig. 4.

As the FPGA is decoupled from the PS running the
application providing the to-be-protected data, an interface
between those two worlds has to be established. One particular
interface called CAESAR Hardware API by Homsirikamol et
al. [33] has been initially developed to enable compatibility
between implementations and to allow fair benchmarking of
cryptographic algorithms submitted to the CAESAR competi-
tion. This competition has had the goal of comparing different
authenticated encryption algorithms. The developed interface
consists of three major data buses called Public Data Input
(PDI), Secret Data Input (SDI) and Data Output (DO). Such
an interface closes the gap between the application providing
the data and the actual cryptographic engine. It can be easily
implemented in FPGA-based designs or may even be used
in ASIC designs. One exemplary AES-GCM implementation
written in VHDL using the CAESAR Hardware API has
been provided by Homsirikamol [34]. In our design, we favor
reduced area consumption over high throughput and reduced
power consumption.
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Figure 4. Simplified overview of the complete system including the FPGA
and the PS (cf. [35]). The PS hosts a Main-Application that controls the
cryptographic engine and handles the Ethernet communication using SW-
modules denoted as CryptoIf and EthIf which interface the provided low-level
drivers.

Emulated PLC DUT

Source: 00:0A:35:01:02:00

Dest: 00:0A:35:01:02:01

Dest: 00:0A:35:01:02:02

Dest: 00:0A:35:01:02:03

Dest: 00:0A:35:01:02:04

Network-Emulator

Source: 00:0A:35:01:02:01

Source: 00:0A:35:01:02:02

Source: 00:0A:35:01:02:03

Source: 00:0A:35:01:02:04

Dest: 00:0A:35:01:02:00

Figure 5. Prototype setup where one board acts as a PLC-DUT and the other
board acts as a network emulator. The shown setup reflects a configuration
with four CRs.

The FPGA implements the cryptographic engine whereas its
inputs for PDI and SDI as well as its output DO are linked to
AXI4-Stream Data FIFOs. These FIFOs in turn are connected
to the processing system using mapped memory through high-
speed DMA channels. A simple bare metal application, running
on the first CPU only, controls the cryptographic engine and
handles the Ethernet communication. For the SW-only solution
a software library, capable of AES-GCM, is included instead
of the cryptographic hardware engine. As this paper focuses
on the HW-solution, the SW-solution was only superficially
considered resulting in the use of a public library [36] without
any further optimization.

In order to simulate a complete Ethernet-based real-time
network under all circumstances including the maximum
amount of CRs without the need of connecting multiple devices,
we decided to emulate the network using a second development
board. From the perspective of our PLC Device Under Test
(DUT), this second board can be seen as a switch sending
frames from several nodes within the network. Our prototype
setup is shown in Fig. 5.

VII. EVALUATION OF PERFORMANCE MEASUREMENTS

The prototype described in the previous section was used
to measure performance-related timings of the cryptographic
engine. We consider two different scenarios: the cryptographic
engine needs to process either many minimum-size frames



or fewer maximum-size frames. The first results in a high
key switching frequency, the second in a larger amount of
to-be-processed IO data per communication cycle (as larger
frames have a higher payload efficiency than smaller frames).
A priori, it is unclear which effect has a larger impact
on the performance. Moreover, both scenarios were tested
for Authenticated Encryption and Authentication-Only. All
considerations and measurements are based on a cycle time
of 1 ms, although as stated above, the results are qualitatively
independent of this concrete choice.

To ensure data comparability between the HW-only and
SW-only solution, it was decided to measure times including
the DMA transfer between PS and FPGA. A strong correlation
between DMA throughput and payload size was identified.
Due to this, the input data to the cipher core for the individual
CRs was concatenated resulting in one big transfer instead
of multiple small transfers. The results given in Table II only
consider this concatenation approach for the inputs and not for
the outputs (from FPGA to processing system). Preliminary
measurements indicate a significant performance boost by
concatenating the output data as well.
Results of the performance measurements are given in Table II
where 𝑡total denotes the measured time from the start of the
DMA transfer until the last result was received, divided by the
amount of CRs.

It shall be noted that this also includes some application-
related time for handling the destination buffer. The DMA
controller requires an uncached area for the destination buffer or
an explicit cache handling. Trials showed that the cache-related
operations take noticeable time, but changing to uncached area
resulted in worse overall system performance. Due to this, we
decided to leave the destination buffer in a cached area of the
memory.

All times were measured within the processing system (cf.
Fig. 4). Due to the plausibility of the measured results, we
decided to not explicitly verify the time within the hardware
cryptographic engine. Therefore the given times for processing
the data within the hardware cryptographic engine (𝑡bare) are
based on ModelSim results.

The results very clearly show that, given a suitable crypto-
graphic hardware engine, industrial fieldbus communication
in combination with AES-GCM-128 is feasible without any
limitation. The results prove, both by simulation and by mea-
surements, that the maximum allowed time for cryptographic
operations per to-be-processed frame (𝑡max) was undercut even
with included DMA transfer times which might be further
optimized. As this is highly architecture-specific, it makes
sense to focus on 𝑡bare in Table II. Considering this calculated
time (𝑡bare) only, it can be stated that the chosen hardware
solution can outperform the required performance (𝑡max) by a
factor of more than 20.

Due to the use of a non-optimized software library, the
results shall only be considered qualitatively, as performance
optimizations are likely to be realized. Nevertheless, it can be
stated that with our setup a SW-only solution would not fulfill
the requirements without limitation. To completely fulfill the

Table II
MEASURED TIMES PER PROCESSED IO DATA FRAME GIVEN IN 𝜇𝑠 WITH THE
DESCRIBED PROTOTYPE USING THE CRYPTOGRAPHIC HARDWARE ENGINE

WITH A CLOCK OF 200 MHZ AS WELL AS THE SOFTWARE SOLUTION WITH
A CLOCK OF 667 MHZ FOR AUTHENTICATED ENCRYPTION (AUTH. ENC.)
AND AUTHENTICATION ONLY (AUTH. ONLY). 𝑡TOTAL EXTENDS 𝑡BARE BY

THE TIME NEEDED FOR THE DMA TRANSFERS AS DESCRIBED WITHIN
SECTION VII AND IS THEREFORE ONLY REQUIRED FOR THE HW-SOLUTION.

Type PT AAD 𝑡total[𝜇𝑠] 𝑡bare[𝜇𝑠] 𝑡max[𝜇𝑠]

A
ut

h.
E

nc
. HW 1444 7 13.00 5.23† 125.00

SW 1444 7 - 243.50 125.00

HW 44 7 2.70 0.39† 8.77

SW 44 7 - 12.60 8.77

A
ut

h.
O

nl
y HW 0 1451 9.30 4.27† 125.00

SW 0 1451 - 165.30 125.00

HW 0 51 2.60 0.36† 8.77

SW 0 51 - 10.00 8.77
†Based on ModelSim results.

requirements, a performance increase by a factor of nearly two
is to be given by a dedicated CPU for this purpose. However,
these results show that a SW-only solution cannot directly be
excluded. For example, the authentication-only protection of
51 bytes payload with the further restriction of using only 20%
of CPU time for it, would still be sufficient to run 10 CRs in
parallel on our test setup.

VIII. CONCLUSION AND OUTLOOK

We determined timing boundaries for cryptographic compu-
tations in PLCs that facilitate the protection of the PLC’s cyclic
real-time communications. We were able to show that using a
simple and lightweight hardware implementation of AES-GCM,
the number of simultaneously maintainable communication
relations is limited by the network interface (assuming 100
Mbits/s Ethernet link) and not by the performance of the
cryptographic engine. Note that this finding is independent of
the used cycle time.

The situation is different if a pure software implementation of
AES-GCM is used. In this case, the number of simultaneously
manageable communication relations in fact is likely limited
by the cryptographic engine. There is, however, a strong
dependence on the chosen platform and a number of other
implementation details. Therefore, it should not be taken as a
general statement about software-only implementations.

A full implementation of the cryptographic engine in
hardware might be costly and can hardly be ported to existing
systems, but it clearly offers the best performance. In terms
of existing systems the SW-only approach might be viable
if enough computing power is available. However, general-
purpose processors, especially in the embedded territory, are not
typically well-suited for calculation demanded by AES. Given
a modern and powerful CPU that supports an AES-specific
instruction set, this approach enables a powerful approach
which is interesting both for extending security features into
existing systems and developing new systems respectively.



We plan to extend our study in a number of ways in the future,
e.g., including other cryptographic algorithms (like message
authentication algorithms based on SHA-3 [37]), evaluating the
prospects of software implementations on modern industrial
platforms, and investigating on suitable hardware architectures.
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